معرفی منابع اصلی تولید فاضلاب های شور
فایل ارائه بررسی روش ها، موانع و مشکلات تصفیه و جداسازی مواد آلی از فاضلاب های شور
معرفی منابع اصلی تولید فاضلاب های شور
دانلود مقاله نهمین کنگره مهندسی بیوسیستم و مکانیزاسیون اردیبهشت 94 تهران، کرج
فرآیندهای جداسازی غشایی
در بسیاری از فرآیندهای جداسازی مخلوطهای گاز یا مایع، از غشاهای نیمه تراوا استفاده میشود که امکان عبور یک یا چند جز مخلوط را راحتتر از بقیه اجزا فراهم میسازد. غشاها ممکن است لایههای نازک مادهای سخت مثل شیشه متخلخل یا فلز آبدیده باشند، اما اغلب از فیلمهای قابل انعطاف پلیمرهای مصنوعی استفاده میشود که برای این منظور تهیه شدهاند و در برابر بعضی از مولکولها تراوشپذیری زیاد دارند.
جداسازی گازها
غشاهای متخلخل
اگر مخلوط گازی از میان غشا متخلخلی به منطقهای با فشار کمتر نفوذ کند، گازی که در غشا نفوذ میکند، غنی از اجزای با وزن مولکولی کمتر است، چون آن اجزا سریعتر نفوذ میکند. اگر منافذ خیلی کوچکتر از میانگین پویش آزاد در فاز گاز (در حدود 1000Ao در شرایط استاندارد) باشند، گازها به صورت مستقل از یکدیگر به روش نفوذ نودسن نفوذ میکنند و نفوذپذیری درون سوراخ با اندازه آن و میانگین سرعت مولکولی نسبت عمکس و با ریشه دوم وزن مولکولی M، نسبت مستقیم دارد. برای نفوذ نودسن، گاز A در منافذ استوانهای رابطه زیر را داریم:
DA = 9700r (T/MA)0.5
در معادله 26-1، r شعاع میانگین منفذ بر حسب سانتیمتر، T دمای مطلق بر حسب کلوین و DA بر حسب cm/s2 است.
شار در واحد سطح غشا بستگی به نفوذپذیری موثر De دارد که به نسبت از نفوذپذیری منفذ کمتر است که درصد تخلخل و ضریب پیچخوردگی است. در غشاهای با تخلخل حدود 50%، این ضریب معمولاً 2/0 تا 3/0 است:
شار هر گاز متناسب با گرادیان غلظت است که اگر ساختمان غشا یکنواخت باشد و گازهای اثر متقابل بر یکدیگر نداشته باشند، خطی است. معمولاً این گرادیان را به صورت گرادیان فشار بیان میکنند و فرض میشود گازها ایدهآل هستند:
ترکیب ماده تراوش کننده بستگی به شار همه موارد دارد. در سیستمی دو جزئی، کسر مولی A در ماده تراوش کننده عبارت است از:
از گرادیان فشار در غشایی که در تماس با مخلوطی دو جزئی هم مولار واقع شده، در شکل 26-1، نشان داده شده است. در این مورد فرض میشود که نفوذپذیری گاز A دو برابر نفوذپذیری گاز B (مل هلیم و متان) و فشارهای جریان بالایی و پایینی به ترتیب 4/2 و 1 اتمسفر است. 60% ماده نفوذ کننده را A تشکیل میدهد که نسبت به غلظت 50%A در خوراک فقط کمی بیشتر غنی شده است. غنی شدن، گرادیان A را کمتر از گرادیان B میکند (8/0=4/0-2/1=∆PB؛ 6/1=6/0-2/1=∆PA)، لذا شار A فقط 5/1=(8/0÷6/0)×2 برابر شار B است که باعث میشود ماده تراوش کننده دارای 60%A باشد. اگر فشار خوراک بیشتر یا فشار طرف نفوذ کننده غشا کمتر از فشار اتمسفر باشد، ماده تراوش کننده کمی از A غنیتر میشود. با متراکم کردن ماده تراوش کننده و فرستادن آن به یک واحد غشایی دیگر، مقدار کمتری از محصول خالصتر به دست میآید. مجموعهای از مراحل با جریان یا چرخه مجدد را برای بدست آوردن محصولات تقریباً خالص میتوان طراحی کرد، اما هزینه تراکم در هر مرحله معمولاً چنین فرآیندهایی را بسیار پرهزینه میسازد.
مثالی کاملاً شناخته شده، از جداسازی گاز به وسیله غشاهای متخلخل و شاید تنها کاربرد آن در مقیاس وسیع جداسازی ایزوتوپهای اورانیوم با استفاده از هگزافلونوریدها 238UF, 235UF است. چون اورانیوم طبیعی فقط 7/0% 125U دارد و نفوذپذیری هگزافلوئوریدها فقط 4/0% است، بیش از هزار مرحله لازم است تا محصولی با 4% 235UF و باقیماندهای با 25/0% 235UF بدست آید.
غشاهای پلیمری
انتقال گازها درون غشاهای پلیمری متراکم (غیرمتخلخل) با مکانیسم انحلال ـ نفوذ صورت میگیرد. گاز در ظرف پرفشار غشاها در پلیمر حل میشود و در فاز پلیمر نفوذ میکند و در طرف کم فشار دفع یا تبخیر میشود. سرعت انتقال جرم بستگی به گرادیان غلظت در غشا دارد که اگر انحلالپذیری متناسب با فشار باشد، با گرادیان فشار در غشاء متناسب است. اختلاف گرادیانهای یک مخلوط دو جزئی در شکل 26-2 نشان داده شده است. به فرض قانون هنری در مورد هر گاز صادق و در سطح مشترک تعادل برقرار است. در این مورد از مقاومت گاز ـ فیلم صرفنظر شده و در نتیجه، فشارهای جزئی در سطح مشترک گاز ـ پلیمر مثل فشارهای جزئی در کل مخلوط است. شار در گاز A برابر است با:
غلظتهای با یک ضریب انحلالپذیری S که واحدهایی همچون mol/cm2-atm دار، به فشارهای جزئی مربوط هستند (S عکس ضریب قانون هنری است):
با استفاده از معادله فوق و تعویض گرادیان غلظت با گرادیان فشار، معادله زیر بدست میآید:
حاصل ضرب DASA، شار در واحد گرادیان فشار است که به آن تراوشپذیری در غشا qA میگویند و اغلب برحسب Barrer بیان میشود. چون در غشاهای موجود در بازار، ضخامت واقعی غشا همیشه معلوم نیست یا مشخص نشده است، اغلب از شار در واحد اختلاف فشار استفاده میشود که تراوشپذیری QA نام دارد:
واحدهای مناسب برای QA برابر std ft3/ft2-h-atm یا L(STP)/m2-h-atm است. در استفاده از مقادیر منتشر شده، تراوشپذیری واحد 4 را باید به دقت امتحان کرد، چون تعاریف مختلفی برای این منظور بکار میرود.
نیست تراوش پذیریها در غشا در مخلوطی دوجزئی برابر قابلیت انتخاب a (که به آن ضریب جداسازی ایدهآل نیز میگویند) میباشد:
مقدار قابلیت انتخاب بزرگ را می توان از نسبت نفوذ پذیری مطلوب یا اختلاف زیاد حلالیت بدست آورد . در مقایسه با نفوذ پذیری در فاز گاز ، نفوذ پذیری در غشا بیشتر به اندازه و شکل ملوکولها بستگی دارد و در ملوکولهای تقریباً یکسان ، اخلافهای زیادی ممکن است موجود باشد . مثلاً ، نسبت Dn2/Do2 در چندین پولیمر بین 5/1 تا 5/2 است هر چند مولکول o2 فقط 10% کوچکتر از موکلول N2است مقادیر نفوذ پذیری با توجه به نوع پلیمر ، تفاوت بسیار با هم دارند . کمترین مقدار مربوط به پلیمرهای شیشه ای یا متبلور و مقادیر زیاد مربوط به پلیمرهایی است که دمایی بالاتر از دمای انتقال شیشه ای دارند . چند مقدار برای نفوذ پذیری در جدول ( 26-1) ذکر شده است . انحلال پذیری گاز نیز بطور گسترده با توجه به گاز و نوع پلیمر تقییر می کند . در گازهایی که نقطه جوش یا دمای بحرانی پایین دارند ، انحلال پذیری کم است ، ولی شباهت گاز و پلیمر هم مهم است . گازهای قطبی معمولاً در پلیمرهای با تعداد گروهای قطبی زیاد ، انحلال پذیر هستند و انحلال پذیری بخار آب در موادی که با مولکولهای آب پیوند هیدروژنی تشکیل می دهند نیز زیاد است .
با وجود محدوده گستره ای از نفوز پذیری و انحلال پذیری تعجبی ندارد اگر برخی از قشاها برای بعضی مخروطهای گازی با قابلیت انتخاب بزرگ باشد . در لاستیک سیلیکونی ، قابلیت انتخاب برای ــــ مساوی 9/4 و برای ــــ مساوی 4/5 است . در کاپتون (kapton) که یک پلی اتر دی ایمید آروماتیک و یک پلیمر شیشه ای است ، تراوش پذیری در غشا دو تا چهار مرتبه کوچکتر از مقدار آن در لاستیک سیلیکونی است و ترتیب تراوش پذیری تغییر می کند . قابلیت انتخاب در کاپتون ، 18/0 برای ــــ و 8/1 برای ــــ است . همان طور که در بخش بعدی نشان داده می شود ، قابلیت انتخاب چهار یا بیشتر معمولاً برای جداسازی خوب لازم است .
در اکثر گازها ، با افزایش نفوذ پذیری افزایش می یابد ، چون افزایش تراوش پذیری از کاهش در انحلال پذیری بیشتر است . تغییر در تراوش پذیری اغلب طبق معادله نمایی (- E/RT) O = a exp با انرژی فعال سازی که از 1 تا ـــــ 5 تغییر می کند در رابطه است . اما افزایش دما معمولاً قابلیت انتخاب غشا را کاهش می دهد و در نتیجه دمای عملیاتی از موازنه مقدار شار زیاد مورد نیاز و قابلیت انتخاب مشخص می شود .
جدول 26-1 ضرایب نفوذ در پلیمرهای انتخابی 2
10 * D در C 25 ،cm 2/s
پلیمر
17/0
57
193
890 54/0
124
372
1110 4/1
93
320
1110 6/3
170
460
1580 پلی اتیلن تری فتالات
پلی اتیلن (g/cm3 964/0 = p
پلی اتیلن (g/cm3 914/0 = p
لاستیک طبیعی
ساختمان غشا ـ شار در فیلم پلیمری متراکم نسبت عکس با ضخامت دارد [ معادله (26-7 )] ، لذا تا آنجا که ممکن است غشا را باریک می سازد ، بدون آنکه در آن سوراخ یا نقاط ضعفی باشد . فرایندهای جداسازی گازی با اختلاف فشارهای 1 تا 20 اتمسفر انجام می شود . لذا غشا نازک باید روی ساختمانی متخلخل واقع شود که در برابر چنین فشارهایی مقاومت داشته باشد ، اما مقاومت کمی در برابر عبور گاز نشان می دهد . این نگه دارنده را از سرامیک ، فلز یا پلیمر متخلخل می سازند و درصد تخلخل آن باید حدود 50% باشد . انداز منفذ باید در حد فیلم نازکی که تکیه گاه را می پوشاند باشد . اما جابجا کردن لایه ای نازک و متصل کردن آن به تکیه گاه بدون آنکه پاره شود کار دشواری است و اکثر غشاهای جداکننده گاز طوری تهیه می شود که تکیه گاه در آنها بخش ثابتی از غشا باشد . از روشهای خاص ریخته گری برای تهیه غشاهای نامتقارن استفاده می شود که لایه یا پوسته ای نازک و متراکم در یک طرف و زیر سازی بسیار متخلخلی روی بقیه غشا دارند . عکس این نوع غشا در شکل (26-3) نشان داده شده است .
غشاهای جداکننده گاز دارای ضخامت 50 تا μm 200 و پوسه 1/0 تا μm 1 می باشند تکنیکهای جدید امکان تولیت غشاهای تجارتی یا پوسته ای نازکتر از μm 1/0 را فراهم ساخته اند .
غشاهای داری پوسته بسیار نازک بیشتر سوراخهای سوزنی دارند و چون عبور از میان این سوراخهای ریز نسبت به نفوذ در میان پلیمر متراکم بسیار سریع صورت می گیرد ، وجود فقط چند سوراخ سوزنی در واحد سطح قابلیت انتخاب را به مقدار قابل توجهی کاهش می دهد . راه حل این مشکل ، پوشاندن غشا با پلیمری بسیار تراوا ولی غیر انتخابی است که سوراخهای سوزنی را پر می کند و تراوش پذیری بقیه قشاها را خیلی کاهش نمی دهد . قشاهای نامتقارن را می توان به شکل ورقهای تخت ، لوله یا الیاف توخالی ، قطری به کوچکی μm 40 تهیه کرد . الیاف توخالی کوچک آنقدر محکم هستند که بدون هیچگونه تکیه گاه اضافی بتوانند در برابر فشارهای زیاد مقاومت کنند ، ولی ورقهای تخت نیاز به تکیه گاه اضافی دارند .
گرادیان غلظت در غشا نا متقارن پیچیده است ، چون نیروی محرک برای نفوذ در لایه پوسته ، گرادیان غلظت گاز حل شده در پلیمر متراکم و نیروی محرک در لایه تکیه گاه متخلخل ، گرادیان غلظت یا فشار در منفذ پر شده است . اگر لایه متخلخل ضخیم باشد ، نفوذ سهم زیادی در شار ندارد و گاز در منفذهای پیچ خورده با جریان آرام انتقال می یابد . در غشاهای دارای شار زیاد ، ممکن است مقاومت قابل توجهی در برابر انتقال جرم در لایه های مرزی سیال در هر دو طرف وجود داشته باشد . شکل (26-4) ، گرادیانهای فشار و غلظت را در غشا نا متقارن نشان می دهد . در این مورد تراوش پذیری A خیلی بیشتر از B و شار A چند برابر شار B است . نمودار ، گرادیان فشار کم A را در لایه مرزی خوراک نشان می دهد ، اما افت زیاد در نشان دهنده آن است که پوسته بیشترین مقاومت در برابر انتقال دارد . توجه کنید گرادیان در B در لایه مرزی ، منفی است و B توسط انتقال کل که عمدتاً A است ، علی رغم گرادیان غلظتی که دارد ، منتقل می شود .
به فرض گازها با فاز پلیمر در دو طرف لایه پوسته در تعادل باشند . ترکیب گاز در منافذ مجاور پوسته معمولاً با ترکیب توده ماده تراویده در آن نقطه یکسان نیست . ترکیب توده بستگی به آرایش جریان جداکننده دارد و ممکن است توده گارز A بیشتر یا کمتر از گاز درون لایه متخلخل داشته باشد . نمودار شکل (26-4) موردی را نشان می دهد که در آن توده ماده تراوش کننده حدود 70% A است و گازی که از لایه پوسته خارج می شود حدود 90% A است .
شیوه های جریان در جداکننده های قشایی – چند روش برای ترتیب دادن به مساحت سطح جداکننده گاز وجود دارد و بعضی از آنها در شکل (26-5) برای غشاهای الیاف توخالی با یک لوله جداری بیرونی نشان داده شده است . فقط تعدادی از الیافها نشان داده شدهاند و برای وضوح تصویر ، اندازه آنها بسیار بزرگ نشان داده شده است . برای جداکننده تجاری ، تا یک میلیون الیاف درون پوسته ای به قطر چند اینچ جا می گیرد . الیاف ها دارای ترکیب اپوکسی در یک یا هر دو سر واحد مورد نظر می باشند و درون ورق لوله ای جای گرفته اند و ماده تراوش کننده جدا از هم نگه داشته می شوند .
شکل (26-5 الف) جداکننده ای را نشان می دهد که برای عبود متقابل مرتب شده است و خوراک گاز در بخش پوسته است . یک سر الیاف بسته است تا انتقال ماده تراوش کننده از صفر در سر بسته به مقدار نهایی در سر تخلیه افزایش یابد . خورامک گاز باید از عرض برخی از الیاف در نزدیکی ورودی و خروجی عبور کند تا جریان همیشه موازی با محور نباشد ، همچنان که در انتقال متقابل ایده آل اتفاق می افتد . توزیع مناسب جریان در پوسته ایجاد مشکل در طراحی می کند خصوصاً در واحدهایی که قطر بزرگی دارند .
در برخی جداکننده ها ، دو سر الیاف ، مثل شکل (26-5 ب) باز است و ماده تراوش کننده از مرکز به هر یک از آن دو انتقال می یابد . این باعث می شود که انتقال در نیمی از جداکننده متقابل و نیمه دیگر آن ، موازی جریان باشد . این آرایشها افت فشار در انتقال ماده تراوش کننده درون الیاف را کاهش می دهد یا امکان ساخت واحدهای طولانی تری با همین افت فشار را فراهم می کند . معمولاً اگر از غشاهای نا متقارن استفاده شود ، تفاوت کمی در ترکیب ماده تراوش کننده در عملیات موازی یا متقابل جریان وجود دارد ، چون شارها به فشارهای جزئی سطح پوسته بستگی دارند نه به فشارهای جزئی جریان محصول .
مشکل توزیع مناسب جریان در پوسته ، با استفاده از جریان متقاطع مشابه شکل (26-5 ج) برطرف می شود . الیاف حول لوله تخلیه مشبک دسته می شوندو خوراک گاز بصورت شعاعی از بیرون لوله جداری به لوله مرکزی منتل می شود . اگر انتقال بصورت شعاعی رو به داخل باشد و با تراوش پذیری گاز از الیاف ، انتقال کاهش یابد ، تغییر زیادی در سرعت عبور از کنار الیاف بوجود نمی آید . بعضی جداکننده های تجاری طوری طراحی می شود که خوراک درمرکز باشد و انتقال شعاعی رو به بیرون صورت گیرد ، گرچه این کار تغییر سرعت از ورودی به خروجی را افزایش می دهد . الیاف را می توان در یک سر واحد ، یا در دو سر آن درون ورقه های لوله ای قرار داد.
ترتیب قرار گرفتن جداکنندهها
اکثر کاربردهای غشا در جداسازی گاز یا مایع نیاز به چند واحد دارند، چون قطر بزرگترین واحدها فقط حدود 1 فوت (3/0 متر) و طول آنها 10 تا 15 فوت (3 تا 5 متر) است. یک مدول با فیبر توخالی به این اندازه چند فوت مربع مساحت غشا دارد و در هر دقیقه چند صد فوت مکعب گاز را فراوری میکند. برای بررسی شدت جریانهای بسیار بیشتر پالایشگاه یا واحد شیمیایی، مانند شکل 26-11، میتوان چندین واحد را بطور موازی کنار هم قرار داد. در طراحی سیستم توزین خوراک باید دقت کرد تا در همه واحدها شدت جریان یکسان باشد. در بهرهبرداری در ظرفیت کم، برخی از واحدها را میتوان تعطیل کرد تا شدت جریان در مدولها تقریباً یکسان باشد. اگر همه واحدها مورد استفاده قرار بگیرند، بازیافت بیشتر محصول نفوذ کننده شدت جریان کم منجر به میعان مایع در طرف خوراک میشود.
گاهی مانند شکل فوق، جداکنندهها را به صورت سری کنار میچینند. افت فشار ناشی از اصطکاک در خوراک معمولاً کم است (کمتر از 1 اتمسفر). لذا میتوان دو یا سه واحد را به صورت سری کنار هم قرار دارد، بدون اینکه مجبور به تراکم مجدد خوراک باشیم. جریانهای تراوش کرده از نظر خلوص با هم متفاوتند و از آنها میتوان برای مقاصد مختلف استفاده یا همه آنها را با هم تلفیق کرد. در روش بهرهبرداری دیگر از فشارهای ماده تراوش کننده کمتر در واحدهای متوالی استفاده میشود. اولین واحد ماده تراوش کننده فشار متوسط ایجاد میکند، به طوری که از گاز میتوان مستقیماً و بدون تراکم استفاده کرد.
واحد دو در فشار کمتر جریان پایین کار میکند تا کاهش غلظت خوراک جبران شود و ماده تراوش کننده برای استفاده مجدد تراکم یابد. در یک واحد بزرگ، از یک ترتیب مخلوط سری ـ موازی میتوان استفاده کرد و چند زوج نفوذ کننده را به یک منبع مشترک خوراک وصل کرد.
برای یافتن ماده نفوذ کننده با خلوص بیشتر، محصول اولین مرحله را میتوان متراکم ساخت و مطابق شکل 26-11 به مرحله دوم فرستاد. از دو مرحله یا بیشتر به این ترتیب میتوان استفاده کرد و خلوص موردنظر را بدست آورد، ولی هزینه تراکم مجدد و افزایش پیچیدگی سیستم این طرح را معمولاً غیراقتصادی میسازد. شیوه جدیدی که در آن از دو جداکننده و یک مرحله تراکم مجدد استفاده میشود، برج غشا پیوسته است. مطابق شکل (26-11)، بخشی از ماده تراوش کننده در جدا کننده دوم تراکم مییابد و به طرف دیگر غشا فرستاده میشود و در آنجا به صورت متقابل با ماده تراوش کننده جریان مییابد. این عمل با برگشت امکان بدست آوردن ماده تراوش کننده بسیار خالص را فراهم میکند. بخار آب برگشتی با جریان در جداکننده جزء تراوشپذیرتر خود را از دست میدهد و با خوراکی که به جداکننده اول میرود، مخلوط میشود. این طرح در واحدهای آزمایشی بکار رفته، ولی هنوز به صورت تجارتی بکار برده نشده است.
جداسازی مایعات
چند نوع فرآیند برای جداسازی مخلوط مایعات با استفاده از غشاهای متخلخل یا غشاهای پلیمری نامتقارن وجود دارد. در غشاهای متخلخل، جداسازی فقط به اختلاف نفوذپذیری بستگی دارد، مانند دیالیز، که در آن محلولهای آبی در فشار جو در دو طرف غشا وجود دارند. در استخراج مایع ـ مایع با استفاده از غشاهای متخلخل، فاز پسمانده امتزاجناپذیر و فاز محصول استخراج توسط غشا از هم جدا میشود و اختلاف در توزیع ماده حل شده تعادلی و نیز اختلاف در نفوذپذیری، ترکیب محصول استخراج را در مخلوط مشخث میکند.
در غشاهای نامتقارن یا غشاهای پلیمری متراکم، تراوشپذیری مایعات با مکانیسم انحلال نفوذ صورت میگیرد. قابلیت انتخاب بستگی به نسبت انحلالپذیری و نسبت نفوذپذیریها دارد و این نسبتها بسیار وابسته به ساختمان شیمیایی پلیمر و مایعات است. نیروی محرک انتقال گرادیان فعالیت در غشا است، ولی بر خلاف جداسازی گاز، نیروی محرک را نمیتوان در دامنه وسیع با افزایش فشار وجه بالای غشا تغییر داد، چون در فاز مایع، فشار تاثیر چندانی ندارد. در تراوش تبیخیری، یک طرف غشا در تماس با خوراک مایع در فشار جو اس و از خلا یا گاز کششی برای تشکیل یک فاز بخار در طرف ماده تراوش کننده استفاده میشود. این کار فشار جزیی سیال تراوش کننده را کاهش میدهد و یک نیروی محرک فعالیت برای نفوذ فراهم میسازد. در اسمز معکوس، ماده تراوش کننده تقریباً آب خالص در فشار حدود 1 اتمسفر است و فشار بسیار زیادی بر محلول خوراک وارد میشود تا فعالیت آب قدری بیشتر از ماده تراوش کننده شود که موجب ایجاد یک گرادیان فعالیت در غشا میشود، گرچه غلظت آب در محصول بیشتر از غلظت در خوراک است.
دیالیز
در دیالیز از غشاهای متخلخل استفاده میشود. دیالیز، فرآیندی است برای جدا کردن انتخابی مواد حل شده با وزن مولکولی کم از یک محلول با نفوذ کردن آنها به طرف ناحیهای با غظت کمتر. در غشا اختلاف فشاری وجود ندارد یا کم است و شار هر ماده حل شده متناسب با اختلاف غلظت است. مواد حل شده با وزن مولکولی زیاد اکثراً در محلول خوراکی برجای میمانند، چون نفوذپذیری آنها کوچک و وقتی مولکولها تقریباً به درشتی منافذ باشند، نفوذ در منافذ کوچک بسیار کاهش مییابد.
گرادیانهای غلظت در آزمایش دیالیزی در شکل (26-12) نشان داده شده است. به فرض خوراک حاوی ماده حل شدهای با وزن مولکولی کم A، ماده حلشدهای با وزن مولکولی متوسط B و کلوئید C است. در دو طرف غشا، از لایههای مرزی غلظت وجود دارد که سهم قابل توجهی در مقاومت کل دارند، اگر غشا از لایههای مرزی نازکتر باشد، گرادیان A or B در غشا نسبت به لایههای مرزی بیشتر است، چون نفوذپذیری موثر کمتر از نفوذپذیری کل است و در حالت پایا، شار در غشا با شار در لایههای مرزی مساوی است. مقادیر CA, CB در غشا مقادی غلظت سیال درون منفذ به غلظتهای مبتنی بر حجم کل غشا است. در سیال داخل منفذ و در محصول، CC=0 است، چون ذرات کلوئیدی بزرگتر از اندازه منفذ باشد.
در معادلههای کلی شار برای ماده حل شده، سه مقاومت به صورت سری منظور شده است:
ضرایب K1, K2 در خوراک و محصول بستگی به شدن جریانها، خواص فیزیکی و ساختمان هندسی غشا دارد که میتوان مشخص کرد. ضریب غشا بستگی به نفوذپذیری موثر De و ضخامت غشا Z دارد.
یک معادله نظری برای De مبتنی بر λ نسبت اندازه مولکول به اندازه منفذ است:
جمله (1-λ)2 کسر حجمی موجود برای مولکولی کروی در منفذی استوانهای است و جمله آخر در معادله فوق ممانعت در برابر نفوذ را نشان میدهد. به ازای 5/0=ε، 2=t، 1/0=λ، Dv164/0=De و به ازای 5/0=λ، Dv022/0=De است. چون De خیلی کمتر از Dv است، شار نفوذ کاملاًبا مقاومت غشا کنترل میشود.
شناخته شدهترین کاربرد دیالیز، استفاده از کلیههای مصنوعی برای خروج مواد زائد از خون اشخاص مبتلا به بیماری کلیوی است. در این دیالیز، از غشاهای سلولزی با الیاف توخالی استفاده میشود و ضمن گردش محلول سالین در بیرون، خون از الیاف عبور میکند. اوره و دیگر مولکولهای کوچک در غشا نفوذ میکند و به طرف محلول بیرونی میروند و پروتئینها و سلولها در خون برجای میمانند. محلول دیالیز نمک و گلوکز را افزایش میدهد تا مانع از دست رفتن این مواد از خون شود.
کاربرد صنعتی دیالیز بازیافت سود سوزآور از محلولهای همی سلولز است که در ساختن ابریش مصنوعی در فرآیند گرانروی بکار میرود. غشاهای مسطح موازی با یکدیگر به صورت فیلتر پرس واقع میشوند و آب در جهت مخالف با محلول خوراک وارد میشود تا یک محصول دیالیز با حداکثر 6 درصد NaOH تولید شود. بازیافت نمکها یا قندها از دیگر محصولات طبیعی یا دیگر محلولهای کلوئیدی را میتوان با دیالیز انجام داد، ولی بیشتر احتمال دارد از فراتصفیه استفاده شود، چون سرعتهای نفوذ بیشتری را میتوان با آن بدست آورد.
در بسیاری از کاربردهای در مقیاس وسیع الکترودیالیز از غشاهای انتخابی یون و یک گرادیان پتانسیل برای تسریع در مهاجرت یونها در غشاها استفاده میشود. آب شور را میتوان با عبور از دستهای از غشاهای متناوباً کاتیونی و آنیونی همچون شکل 26-13 به آب آشامیدنی تبدیل کرد. در نیمی از فضاها، کاتیونها به یک طرف و آنیونها به طرف دیگر میروند و آب خالص میماند. محلول در فضاهای متناوب غلیظتر میشود و نهایتاً دور ریخته میشود. واحدهای مشابهی برای تغلیظ محلولهای نمکی در فرآیندهای مختلف بکار میروند. یک مورد استفاده از الکترودیالیز در تصفیه محلول نمکی دفع شده از یک سیستم اسمز معکوس است. غلظت نمک تا هشت برابر افزایش مییابد و این هزینه دفع را کاهش میدهد و آب حاصل به واحد اسمز معکوس بازگردانده میشود. در این کاربرد، قطبهای الکترود در فواصل زمانی منظم معکوس میشود تا مشکلات جرمگرفتگی بر اثر غلظت زیاد نمک به حداقل برسد.
غشاها در استخراج مایع ـ مایع
استخراج یک ماده حل شده از آب به یک مایع آلی یا برعکس را میتوان با استفاده از غشاهایی برای جداسازی فازها و تامین مساحت زیادی برای انتقال جرم انجام داد. از غشاهای با الیاف توخالی یا غشاهای مسطح میتوان استفاده کرد و آن وقت مساحت انتقال جرم را با طراحی مشخص نمود و این مساحت به متغیرهایی همچون شدت جریان، گرانروی و کشش سطحی، که بر مساحت پراکندگیهای مایع ـ مایع اثر میگذارند، بستگی ندارد. دستگاه استخراج غشایی را طوری مرتب میکنند که دو فاز در آن جریان متقابل داشته باشد، بدون اینکه محدودیتی از نظر طغیان وجود داشته باشد، حال آنکه در برجهای آکنده یا برجهای پاششی چنین نیست. مزیت دیگر این است که نیازی به مخزن تهنشینی یا جدا کننده امولسیون نیست، چون فازها با غشا از هم جدا نگه داشته میشوند، اما غشا یک مقاومت اضافی در برابر انتقال جرم بوجود میآورد و برای اینکه فرآیند جذب کننده شود، این مقاومت را به حداقل میرسانند.
اگر از فیلم پلیمری متراکم در یک دستگاه استخراج استفاده شود، مقاومت غشا به دلیل نفوذپذیری بسیار کم در پلیمرهای جامد، خیلی زیاد میشود. استفاده از غشا نامتقارن، مقاومت آن را کاهش میدهد. چون نفوذ در ساختمان باز سریعتر از پوسته متراکم انجام میگیرد، اما حداقل مقاومت در غشا متخلخل حاصل میشود، یعنی غشایی که منافذ آن بطور کامل در غشا گسترش یافتهاند. جداسازی فازها با انتخاب غشایی که با یک فاز مرطوب نمیشود، حفظ میشود. مثلاً غشاهایی که از تفلون یا پلیپروپیلن ساخته شدهاند، آبگریز (هیدروفوبیک) هستند و آب وارد منافذ آنها نمیشود، مگر اینکه تحت فشار زیاد باشد. فشار ورودی بحرانی به زاویه تماس و اندازه و شکل منافذ بستگی دارد و در بعضی از غشاهای تجاری به 50lbf/in2 میرسد.
یک دستگاه استخراج با الیاف توخالی پلیپروپیلن با فاز آلی درون الیاف در فشارهای کمی بیشتر از فشار فاز آلی در بیرون کار میکند. منافذ غشا از حلال آلی پر میشوند و سطح مشترک مایع ـ مایع در دهانه منافذ است. گرادیانهای غلظت در شکل 26-14 برای موردی که در آن غلظت تعادلی ماده حل شده در فاز آلی بیشتر است، رسم شده است. در این مورد مقاومت کل برابر است با:
ضرایب برای فاز آب kw، برای فاز آلی ko و برای غشا Deo/z معمولاً اندازههای تقریباً یکسان دارند، ولی اگر ضریب توزیع m بزرگ باشد، بیشتر مقاومت در فاز آبی است. در اینجا m نسبت غلظت ماده حل شده در فاز آلی به غلظت آن در فاز آبی است.
اگر از غشای آبگریز استفاده شود، منافذ از فاز آب پر میشوند و فاز آلی را باید در فشارهای زیاد نگهداشت تا آب از منافذ عبور نکنند و در فاز آلی قطره تشکیل نشود. در سیستمهای نشان داده شده در شکل 26-14، استفاده از یک غشای آب دوست به معنای وجود دو مقاومت در فاز آبی و یک ضریب کل کوچکتر است، چنانکه معادله زیر نیز آن را نشان میدهد:
اگر ضریب توزیع در ماده حل شده به شدت به نفع فاز آبی عمل (m<<1)، فاز آلی مقاومت عمده را دارد و غشای آب دوست را میتوان انتخاب کرد تا مقاومت آن کمتر شود.
دستگاههای استخراج با الیاف توخالی در آزمایشگاه تست شدهاند و سرعتهای انتقال جرم معمولاً با نظریه موافقت میکنند، اگرچه روابط رضایتبخش برای ضریب بیرونی هنوز موجو نیست. این ادوات باید در سیستمهایی بکار رود که در آنها به دست آوردن پراکندگی مناسب دشوار است یا امولسیون شدن، جداسازی فاز نهایی را دشوار میسازد.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 20 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
توجه ای که در دهههای اخیر به صرفهجویی در میزان مصرف انرژی صنایع معطوف شده، در مهندسی شیمی نیز جایگاه ویژهای یافته است. با توسعه صنایع غذایی و لزوم افزایش بازده فرایندی و کاهش مصرف انرژِ فرایندهای جداسازی مواد مختلف دراین صنایع اهمیت چشمگیری یافته اند لذا می توان بادرنظر گرفتن عوامل مختلف مانند دسترسی به تجهیزات هزینه های ساخت و انرژِی و همچنین اهداف جداسازی درفرایندمربوطه روش مناسبی را برای جداسازی انتخاب کرد دراین راستا فرایندهای غشایی با دارا بودن مزایایی چون کاهش مصرف انرژی انتقال جرم و راندمان بالا و سهولت کاربرد از اهمیت بسزایی برخوردارند دراین راستا غشاهای جداسازی گونه های مختلفی از مواد درحالات جامد مایع و گاز توسعه یافته اند فرایندهایغشایی لبنیات مایع موجب کاهش هزینه های عملیاتی ناشی از مصرف برق و بخار بهبود ظرفیت و کارایی وافزایش کیفیت محصول می گردد غشا به عنوان یک فاز که اجزای خوراک به صورت انتخابی از آن عبور می کنند، تعریف می گردد به عبارت بهتر، غشا به صورت فازی که اجزای جداشونده خوراک با سرعت های متفاوت از آن عبور می کنند عمل می کند در این روش، معمولاً تغییر فازی صورت نمی گیرد و محصولات نیز در همدیگر قابل امتزاج هستند. در این پژوهش به بررسی بخار آب و هیدروکربن های سنگین بر روی رفتار تراوایی و جداسازی گازهای اسیدی توسط غشای peba خواهیم پرداخت.
فهرست مطالب
فصل اول:فناوری غشایی و کاربرد آن در جدا سازی گاز
1-2 آﺷﻨﺎﻳﻲ ﺑﺎ ﻓﺮآﻳﻨﺪﻫﺎی ﻏﺸﺎﻳﻲ.. 2
1-2-1 آﺷﻨﺎﻳﻲ ﺑﺎ اﺳﻤﺰ ﻣﻌﻜﻮس و ﻧﺎﻧﻮﻓﻴﻠﺘﺮاﺳﻴﻮن. 5
1-4- فرایندهای با نیرو محرکه فشار. 7
1-4-1- فرایندهای فیلتراسیون. 7
1-5- فرایندهای با نیرو محرکه الکتریکی.. 18
1-6- چالشهای تحقیقات کشور در زمینه فناوری جداسازی غشایی گازها 26
1-6-1- مهمترین زمینه های رقابت فناوری غشایی با فرایندهای کلاسیک در صنعت نفت... 26
1-6-2- بررسی های تئوری مکانسیم جداسازی توسط غشاء. 28
1-7- چالش های پیش رو در کاربرد غشاها برای جداسازی گاز. 30
1-7-3- توزیع نانوذرات در داخل شبکه پلیمری غشا 32
1-7-4- نشاندن یک لایه بسیار نازک غشائی روی سطح یک زیرلایه (غشاى نامتقارن) 35
فصل دوم:مروری بر فرآیندهای جداسازی غشایی گازها باتأکید بر جداسازی الفین از پارافین
2-2- وضعیت فعلی فرآیندهای جداسازی غشایی گازها 40
2-4- کاربردهای فعلی و آینده مدولهای غشایی جداسازی گازی.. 44
2-4-1- جداسازی نیتروژن از هوا 44
2-4-2- جداسازی اکسیژن از هوا 46
2-4-3- جداسازی هیدروژن از هوا 49
2-5- جداسازی گاز طبیعی به کمک فرآیند غشایی.. 55
2-5-3- آب زدایی از گاز طبیعی.. 61
2-6- جداسازی بخار/گاز به کمک فرآیند غشایی.. 66
2-7- جداسازی بخار/ بخار به کمک فرآیند غشایی.. 68
فصل سوم:جداسازی گازها با استفاده از غشا peba
3-2ساخت پایه های سرامیکی اصلاح شده نانوکامپوزیتی.. 74
3-3 ساخت لایه های نازک غشایی PEBA روی پایه های سرامیکی نانوکامپوزیتی.. 75
3-4- مواد و روش های انجام آزمایشات غشاهای PEBA.. 76
3-4-1- آزمایشهای عبوردهی گاز. 78
3-5- غشای هیبریدی PEBA روی پایه سرامیکی نانوکامپوزیتی.. 79
3-6- عملکرد غشای هیبریدی نانو ساختار در جداسازی گازها 81
3-6-1- جداسازی از ............. 81
3-7- نتیجه گیری بررسی آزمایشات جداسازی گازها با استفاده از غشا PEBA.. 85
3-8- جداسازی آروماتیک ها از غیر آروماتیک ها به کمک غشای PEBA.. 88
3-8-1- جداسازی آروماتیک ها از آلیفاتیک الکل ها 88
3-8-2- جداسازی آروماتیک ها از هوا یا نیتروژن. 89
3-8-3- جداسازی آروماتیک ها از Alicyclic ها 90
3-8-4- فرآیند Naphtha Cracker 93
3-8-5- جداسازی آروماتیک ها از آلیفاتیک ها 95
3-8-6- جداسازی آروماتیک ها از پساب های صنعتی.. 99
3-8-7- ملاحظات جداسازی آروماتیک ها از غیر آروماتیک ها 100
3-9- اتوکسیلات های الکل چرب.. 100
3-9-2- اطلاعات تجاری لوریل الکل اتوکسیلات ها 101
3-9-4- حمل و نقل و ذخیره سازی.. 102
3-9-5- ملاحظات سلامتی و ایمنی.. 103
آموزش ویدیویی جداسازی پروتئین - ژل الکتروفورز