فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

نیروگاه توس

اختصاصی از فی گوو نیروگاه توس دانلود با لینک مستقیم و پر سرعت .

نیروگاه توس


نیروگاه توس

نیروگاه توس

78 صفحه در قالب word

 

 

 

 

 

پیش گفتار

امروزه در کلیه نیروگاههای بخاری ونیروگاههای سیکل ترکیبی کنترل سطح درام ازاهمیت ویژه ای برخوردارمی باشدازاین رو نصب وسایل ودستگاههای مهم ودقیق ضروری می باشد. درنیروگاههابرای کنترل سطح تانکها،سیستم های مختلفی درنظرگرفته می‌شود ویکی‌از تانکهای موجود درنیروگاه که کنترل سطح آن از اهمیت ویژه ای برخوردار است، «درام» می باشد. چون این تانک تحت فشار و درجه حرارت‌بالا می‌باشد،به این جهت کنترل والوهایی درنظرگرفته میشود که باتوجه به اطلاعات وارده سطح درام را کنترل میکند ولی باتوجه به تجربه نشان داده شده است که درمقادیربسیارکم آب تغذیه، کنترل سطح درام با کنترل والوی بزرگ بسیارمشکل است بنابراین جهت کنترل بهترسطح درام درتناژکم ازوالوکنترلی کوچکتراستفاده می‌شود. درتناژ معمولی کنترل والو 100% اصلی درمداراست ولی درصورت بروز نقص روی این کنترل  والو، نیازمبرم به کنترل والوی میباشد که واحدرا از تریپ حتمی نجات دهد وآن کنترل والو100% رزرو می باشد که سیستم آن موتوری‌بوده ومی‌تواند درزمانهای اضطراری جایگزین کنترل والو اصلی شود. بنابراین جهت کنترل بهتر سطح درام درمسیرآب تغذیه ازسه مسیر30%  ، 100% اصلی و100% رزرو استفاده می شود. لازم به ذکراست که اختلاف فشار دوطرف کنترل والو که به  معروف است ومعادل 5/7‌آتمسفر می باشد، بایستی کنترل گردد که این اختلاف فشاربرای پاسخگویی بهترسیستم جهت جبران لحظه ای تناژآب برای سطح درام می باشد. اساساً هدف اصلی ازسیستم کنترل آب تغذیه این است که مقدار آب ورودی به بویلر باتوجه به مقداربخارمصرفی تامین گردد وفلوی آب تغذیه(ورودی به بویلر) طوری تنظیم شود که درهربار و هرشرایط واحد، سطح دریک حد مشخص قرار گیرد و کنترل‌سطح درام ازاین نظر حائزاهمیت است که سطح درام  برروی درجه‌حرارت بویلر تاثیرمستقیم می گذارد، به طورمثال اگرسطح درام پایین بیفتد در درام حجم بیشتری بخارخواهیم داشت که در نهایت درجه حرارت بالا  می رود و بالعکس.  

تئوریهای علمی شغل مورد تصدِی

شرح سیستم آب تغذیه نیروگاه توس

سیستم آب تغذیه اصلی دردیاگرام MAS-E4-120 مشخص شده است. این سیستم برای آب تغذیه اصلی منظورشده که ازفیدواترتانک تااکونومایزر بویلر به این نام شناخته می شود سیستم آب تغذیه دارای وظایف زیر می باشد: - گرم کردن وهواگیری تقطیرات اصلی درداخل تانک اصلی «فیدواترتانک»  و دی‌اریتور RL01B010 توسط بخاربرداشتی شماره سه ازتوربین فشارمتوسط (ازخطRH30) انجام می شود. - آب اصلی جهت بویلرتوسط پمپ های اصلی سیکل (RL11/12/13D010) که ازفیدواترتانک تغذیه شده  و به درام بویلرمنتقل می شود، ضمن اینکه کمترین درجه‌حرارت آب ورودی به درام  135 درجه سانتی گرادمیباشد. - گرم کردن آب تغذیه سیکل توسط هیترهای فشار قوی شماره4و5(RL20B010/20) صورت می گیرد. - کنترل سطح درام دربویلر اصلی بوسیله کنترل والو30%(RL31S004) درطول زمان راه‌اندازی بطور دقیق انجام می شود. - تغذیه آب مورد نیاز آبزن های سوپرهیت(NA60/NA20) و ریهیت(NE21/NE22). - تغذیه آب تزریقی مورد نیاز برای بای‌پاس فشارقوی(RA20S010) درمواقع راه‌اندازی، تریپ توربین و یا زمانی که فشارخط کلدریهیت ازفشار طراحی آن(SETPOINT) افزایش یابد. - انتقال تقطیرات از هیتر شماره 4 به تانک تغذیه اصلی توسط خط (R P10/15Z010). - درهنگامی که بخاربرای بویلر کمکی ازواحدی گرفته شده باشدازطریق کلدریهیت پس ازمصرف تقطیرات آن ازطریق خط (0 RC70Z010) به تانک تغذیه همان واحد برگشت می کند. - گرم کردن هوای ورودی به بویلرتوسط بخارزیرکش ازتوربین ویا کلدریهیت دربالاتر از25% بارانجام می گیرد، تقطیرات این بخاروارد                               RECEPTION TANK(RK46B010) شده وازآنجا وارد تانک تغذیه اصلی از طریق خط (RK47Z020).(نقشهMAS-E4-120) می گردد.

«تجهیزات سیستم آب تغذیه اصلی»

1- تانک تغذیه اصلی(RL01B010) 2- پمپ های آب تغذیه اصلی60%*3(RL11/12/13D010) 3- هیترفشارقوی شماره 4 4- هیترفشارقوی شماره 5 5- کنترل والونئوماتیکی 100%(RL32S004) 6- کنترل والونئوماتیکی30%(RL31S004) 7- والوموتوری 100%(RL33S004)

تانک تغذیه اصلی با دی‌اریتور(RL01B010)

فیدواترتانک بعنوان یک هیتربازعمل می کند وگنجایش آن 125 مترمکعب می باشد. درحین استارت واحد، هوای موجود درآب و بخار داخل دی‌اریتوربه فلاش باکس (SD22B001) که به اژکتورهای کندانسورمتصل بوده، ازطریق خط(SD22)تخلیه می‌گردد. بدین منظوردرراه اندازی، اژکتورراه انداز(SL01D001) عمل کرده ونهایتاً گازهای غیرقابل تقطیر از داخل دی‌اریتورخارج می گردد. دربهره برداری معمولی هوازدائی دی‌اریتورفقط توسط لوله (RL01Z061) که مستقیمابه اتمسفرمتصل است بوسیله والو(RL01S210) انجام می گیرد و مسیر قبلی بسته می باشد. برای جلوگیری ازیخ‌زدگی آب داخل تانک اصلی تغذیه مبدلی در داخل تانک تعبیه شده است که بخار ازخط (RQ50Z010) وارد، کندانس آن ازخط (RK50Z010)خارج می گردد.

 

 

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است

 


دانلود با لینک مستقیم


نیروگاه توس

تحقیق/مقاله آماده نیروگاه هسته ای‎ با فرمت ورد(word)

اختصاصی از فی گوو تحقیق/مقاله آماده نیروگاه هسته ای‎ با فرمت ورد(word) دانلود با لینک مستقیم و پر سرعت .

می‌دانیم که هسته از پروتون (با بار مثبت) و نوترون (بدون بار الکتریکی) تشکیل شده است. بنابراین بار الکتریکی آن مثبت است. اگر بتوانیم هسته را به طریقی به دو تکه تقسیم کنیم، تکه‌ها در اثر نیروی دافعه الکتریکی خیلی سریع از هم فاصله گرفته و انرژی جنبشی فوق العاده‌ای پیدا می‌کنند. در کنار این تکه‌ها ذرات دیگری مثل نوترون و اشعه‌های گاما و بتا نیز تولید می‌شود. انرژی جنبشی تکه‌ها و انرژی ذرات و پرتوهای بوجود آمده ، در اثر برهمکنش ذرات با مواد اطراف ، سرانجام به انرژی گرمایی تبدیل می‌شود. مثلا در واکنش هسته‌ای که در طی آن 235U به دو تکه تبدیل می‌شود، انرژی کلی معادل با 200MeV را آزاد می‌کند. این مقدار انرژی می‌تواند حدود 20 میلیارد کیلوگالری گرما را در ازای هر کیلوگرم سوخت تولید کند. این مقدار گرما 2800000 بار برگتر از حدود 7000 کیلوگالری گرمایی است که از سوختن هر کیلوگرم زغال سنگ حاصل می‌شود. گرمای حاصل از واکنش هسته‌ای در محیط راکتور هسته‌ای تولید و پرداخته می‌شود. بعبارتی در طی مراحلی در راکتور این گرما پس از مهارشدن انرژی آزاد شده واکنش هسته‌ای تولید و پس از خنک سازی کافی با آهنگ مناسبی به خارج منتقل می‌شود. گرمای حاصله آبی را که در مرحله خنک سازی بعنوان خنک کننده بکار می‌رود را به بخار آب تبدیل می‌کند. بخار آب تولید شده ، همانند آنچه در تولید برق از زعال سنگ ، نفت یا گاز متداول است، بسوی توربین فرستاده می‌شود تا با راه اندازی مولد ، توان الکتریکی مورد نیاز را تولید کند. در واقع ، راکتور همراه با مولد بخار ، جانشین دیگ بخار در نیروگاه‌های معمولی شده است.

فهرست :

نیروگاه های اتمی

شکافت یا شکست اتمی

جوش یا گداخت اتمی

نحوه آزاد شدن انرژی هسته‌ای

کاربرد حرارتی انرژی هسته‌ای

سوخت راکتورهای هسته‌ای

غنى سازى اورانیوم

چرخه سوخت هسته ای

راکتورهاى هسته‌اى

نیروگاه هسته‌ای

انرژی بستگی هسته‌ای

کاربرد انرژی هسته ای در تولید برق

نیروگاه شکافت هسته ای

نیروگاه جوش هسته ای

فرآیند عملیاتی نیروگاه اتمی بوشهر

مدار خنک کننده

اجزای راکتور

نیروگاه اتمی بوشهر و محیط زیست

وظیفه سیستم‌های ایمنی در هنگام بروز احتمالی حادثه


دانلود با لینک مستقیم


تحقیق/مقاله آماده نیروگاه هسته ای‎ با فرمت ورد(word)

گزارش کامل کارآموزی رشته الکترونیک نیروگاه نکاء

اختصاصی از فی گوو گزارش کامل کارآموزی رشته الکترونیک نیروگاه نکاء دانلود با لینک مستقیم و پر سرعت .

گزارش کامل کارآموزی رشته الکترونیک نیروگاه نکاء


گزارش  کامل کارآموزی رشته الکترونیک  نیروگاه نکاء

دانلودگزارش  کامل کارآموزی رشته الکترونیک  نیروگاه نکاء بافرمت ورد وقابل ویرایش تعدادصفحات69

گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی گزارش کارورزی


این پروژه کارآموزی بسیار دقیق وکامل طراحی شده وقابل ارائه جهت واحد درسی کارآموزی

پیشگفتار  مطالبی که در این گزارش بیان شده گوشه‌ای بسیار کوچک از قسمتهای مختلف نیروگاه عظیم نکاء می‌باشد. که سعی کرده‌ام عمده موارد مهم و کاربردی که در یک نگاه و بطور مختصر مورد نیاز خواهد شد را بیان کنم.  در جزوه حاضر سیکل نیروگاه و نقشه‌هایی جامعیت داشته و خلاصه‌ای از قسمتهای اصلی نیروگاه که نقش کلیدی در کاربری این صنعت مادر را دارا می‌باشند، تا حد امکان توضیح داده‌ام. واجب است از تمام مسئولین نیروگاه، متخصصین قسمت معاونت مهندسی و قسمت آموزش که امکان این مهم را فراهم ساختند کمال سپاس و قدردانی ابراز نمایم.  باتشکر  فاطمه ولی            مقدمه انسان همواره برای رفاه زندگی خود در تکاپو بوده و هست. ابتدا نیروی ماهیچه‌ای را امتحان کرد که با کهولت سن رفته رفته فرسایش می‌یافت. سپس انرژی باد و در کنار آن از انرژی پتانسیل آب استفاده نمود. با گذشت زمان دید بازتری پیدا کرد که باعث درک انرژی بخار شد. استفاده از انواع انرژی همچون: انرژی شیمیایی، جزر و مد دریاها، انرژی هیدرولیکی، هسته‌ای و بالاخره انرژی نورانی خورشید را نیز آموخت که همه در خدمت پیشرفت و تکامل انسان می‌باشند. در این میان بهترین نوع انرژی باید دارای خصوصیات کاملی باشد. انرژی الکتریکی یکی از بهترین فرم‌های انرژی می‌باشد زیرا : 1-    توزیع و انتقال آن به راحتی و بطور مطمئن صورت می‌گیرد ( انتقال انرژی الکتریکی از طریق خطوط نیرو در مقایسه با حمل سوخت با وسایل نقلیه. )  2-    دستگاههای متنوعی را می‌توان با آن بکار انداخت. 3-    راندمان انرژی الکتریکی در تبدیل به انرژی‌های دیگر بالاست ( راندمان یک بخاری الکتریکی % 100 می‌باشد درصورتیکه راندمان یک بخاری نفتی % 50 است. ) 4-    استفاده از آن هیچگونه آلودگی برای محیط زیست بوجود نمی آورد. برای تأمین انرژی الکتریکی از تبدیل فرمهای دیگر انرژی موجود در طبیعت استفاده می‌شود که در حال حاضر متداول‌ترین آن تبدیل انرژی شیمیایی به الکتریکی است که با استفاده از سوخت فسیلی ( سوخت مایع، گاز، ذغال‌سنگ ) در نیروگاههای بخاری و یا گازی صورت می‌گیرد که با توجه به راندمان بالاتر نیروگاههای بخاری نسبت به گازی قسمت عمده تأمین برق بعهده این نیروگاههاست. در نیروگاههای بخاری سوخت فسیلی در کوره (بویلر)می‌سوزد و انرژی شیمیایی بین پیوندهای خود را به صورت حرارت به آب می‌دهد و آن را به بخار تبدیل می‌کند. بخار حاصل در توربین به انرژی مکانیکی تغییر شکل می‌دهد که با گرداندن ژنراتور انرژی الکتریکی بدست می‌آید. بنابراین فرم تغییر انرژی در نیروگاههای بخاری بصورت زیر است : انرژی الکتریکی                 انرژی مکانیکی                 انرژی گرمایی             انرژی شیمیایی بدیهی است که در این تبدیل انرژی مقداری تلفات وجود دارد که با بهبود طراحیها و پیشرفت تکنولوژی سعی می‌شود مقدار آن کم و حداکثر راندمان ممکن بدست می آید، بطوریکه راندمان نیروگاههای بخاری از 20 % در نیروگاههی قدیمی به حدود 42 % در نیروگاههای مدرن امروزی افزایش یافته است. حال که مقدمه‌ای بر انرژی، علت مصرف انرژی الکتریکی و خلاصه‌ای از کار در نیروگاههای بخاری بیان شد، نظری اجمالی بر روند تولید برق در ایران و تاریخچه نیروگاه حرارتی شهید سلیمی نکاء داشته سپس به توضیح در مورد قسمتهای اصلی نیروگاه نکاء خواهیم پرداخت.   نیروگاه شهید سلیمی نکاء صنعت برق در ایران بصورت نیروگاههای دیزلی کوچک شبکه‌های توزیع محدود در برخی از شهرهای بزرگ مانند تهران، تبریز و اصفهان در اواخر قرن سیزدهم ( هـ . ش ) و توسط سرمایه‌داران بخش خصوصی آغاز گردید. در اوایل دهه 1340 وزارت نیرو شرکتهای برق منطقه‌ای و سازمان آب و برق خوزستان تشکیل و کشور به 12 منطقه تقسیم شد و بدنبال آن در سال 1348 وزارت نیرو اقدام به تأسیس شرکت توانیر ( شرکت تولید و انتقال نیروی برق ایران ) نمود. ظرفیت کل نیروگاههای حرارتی شرکت توانیر به هنگام تأسیس برابر 415 مگاوات و در سال 1365 با بهره‌گیری از 24 نیروگاه و 139 واحد توربین ** به بیش از 9332 مگا وات رسید. نیروگاه شهید سلیمی نکاء بعنوان یکی از مهمترین سرمایه‌های ملی و از بزرگترین نیروگاههای کشور متشکل از دو بخش مستقل بخاری و گازی در ساحل دریای خزر و در 22 کیلومتری شمال شهرستان نکا قرار دارد.  قدرت نامی این نیروگاه 2035 مگا وات می‌باشد که از چهار واحد 440 مگا واتی بخار و دو واحد 13715 مگاواتی گاز حاصل می‌شود. سوخت اصلی واحدهای بخاری، گاز و سوخت کمکی آنها مازوت و سوخت اصلی واحدهای گازی، گاز و سوخت کمکی آنها گازوئیل است. قرارداد احداث واحدهای بخاری در تاریخ 8/6/1354 بین وزارت نیرو و کنسرسیومی متشکل از سه شرکت آلمانی به اسامی بی . بی . سی، بابکوک، بیلفینکر منعقد و متعاقب آن عملیات احداث شروع گردید. اولین واحد در تاریخ 2/7/1385 و پس از آن به فاصله تقریبی هر شش ماه، یک واحد وارد مدار شده است.

فهرست مطالب
عنوان    صفحه
پیشگفتار ............... .......................    1
مقدمه .......... ..............    2
نیروگاه شهید سلیمی........ .................    4
سوخت مصرفی ........... .........    5
آب مصرفی.... ..................    6
دیگ بخار ( بویلر ) ....... .........    7
توربین ........... ..................    8
ژنراتور .......... ............    10
پست فشار قوی ... ...............    11
مشخصات سایر قسمتها به اختصار ....... ......    12
روند حرارت دهی و بدست آوردن بخار سوپرهیت .............................    17
سیکل نیروگاه و نمودار درجه حرارت انتروپی (T – S ) ....................    20
بلوک دیاگرام مسیر بسته آب و بخار.... .........    23
سیستم آب تغذیه بویلر ....... ...................    24
سیستم بویلر (کوره احتراق ) ......... ...    34
سیستم توربین و بخار............... .........    38
سیستم آب‌کندانسیت........ ..............    48
سیستم بخارهای استراکشن ........ ..........    56
سیستم تخلیه‌ها و درین‌ها ........... ..........    62
نقشه‌ها .........
 


دانلود با لینک مستقیم


گزارش کامل کارآموزی رشته الکترونیک نیروگاه نکاء

پایان نامه بررسی انتقال حرارت در وسایل و تجهیزات نیروگاه ( پایان نامه مکانیک سیالات )

اختصاصی از فی گوو پایان نامه بررسی انتقال حرارت در وسایل و تجهیزات نیروگاه ( پایان نامه مکانیک سیالات ) دانلود با لینک مستقیم و پر سرعت .

پایان نامه بررسی انتقال حرارت در وسایل و تجهیزات نیروگاه ( پایان نامه مکانیک سیالات )


پایان نامه   بررسی انتقال حرارت در وسایل و تجهیزات نیروگاه ( پایان نامه مکانیک سیالات )

 

 

 

 

 

 

تعداد  صفحات : 400
فرمت فایل: word(قابل ویرایش)  
 فهرست مطالب:
فصل اول:پمپ
قسمت اول: تقسیم بندی پمپ‌ها     2
قسمت دوم: انتخاب پمپ و تعاریف    5
قسمت سوم: پمپ‌های گریز از مرکز     15
قسمت چهارم: پمپ‌های پروانه ای و توربینی     24
قسمت پنجم: پمپ‌های دوار     30
قسمت ششم: پمپ‌های پیستونی     45
قسمت هفتم: پمپ‌‌های اندازه‌گیر     58
قسمت هشتم: پمپ‌های خاص     70
قسمت نهم: نگهداری پمپ    79
 
 فصل دوم‌‌: بویلر
مقدمه    92
 تقسیم بندی بر اساس ظرفیت     92
تقسیم بندی بر اساس تیپ و شکل     95
تقسیم بندی از نظر محتوای لوله ها     96
تقسیم بندی از نظر سیر کولاسیون سیال عامل     97
اجزای تشکیل دهنده ی دیگ های بخار     98
بررسی دیگ های لوله آبی     105
انتقال حرارت در لوله آتشی ها و لوله آبی     112
کاربری و انتخاب دیگ های بخار     119
 
فصل سوم : کوره
مقدمه    130
ساختمان کوره‌ها     130
انواع کوره‌ها     135
کوره‌های سنتی     136
کوره هوفمن     137
کوره های ماشین بخار     138
کوره‌های مخصوص     139
انواع کوره‌های الکتریکی     146
کوره های مقاومتی     148
مزایا و معایب استفاده از کوره های الکتریکی    151
انتقال حرارت در کوره‌ها     152
کاربرد کوره‌ها در صنعت     161
نکاتی پیرامون انتخاب کوره‌ها     164
مدار آب / بخار کوره     169
انتقال حرارت در دسته لوله‌ها    173
 
فصل چهارم: توربین ها
1-4 تعریف مفهوم     182
1-1-4 خروجی     182
2-1-4 سرعت مخصوص     182
3-1-4 خلاء زائی    184
4-1-4 سرعت رانش    186
2-4 انواع توربین‌ها     189
1-2-4 توربین پلتون    189
2-2-4 توربین فرانسیس     191
3-2-4 توربین کاپلان     194
4-2-4 توربین‌های لوله‌ای     198
1-4-2-4 توربین حبابی    199
2-4-2-4 توربین لوله‌ای     201
3-4-2-4 طراحی ژنراتور حاشیه‌ای     202
 
فصل پنجم – کندانسور
مقدمه    206
چگالنده های سطحی    207
چگالنده‌های خنک شونده با جریان هوای سرد بصورت تماسی     208
اطلاعات کلی در مورد حذف هوا از چگالنده‌های توربینی بخار     218
برج‌های خنک‌کن     219
خصوصیات مبدلهای هوایی     223
جزئیات طراحی خنک‌کن‌های هوایی    225
انتخاب کندانسور    228
طبقه بندی کندانسورها برای کاربردهای صنعتی     230
طراحی حرارتی کندانسورها     233
محافظت و تمیز کاری کندانسورها     241
محدودکنندة عمرکاری     244
نشت آب سردکننده به کندانسورها     247
تمیز کردن کندانسورها      253
 
فصل ششم : ژنراتور
مقدمه     260
پیشینه تاریخی     261
استانداردها و مشخصات     265
عملکرد ژنراتور     267
اعمال بار     272
انواع ژنراتورها     273
ژنراتورهای توربینی با ظرفیت کمتر     273
ژنراتورهای سنکرون قطب برجسته آبی     275
ژنراتورهای قطب برجسته دیزلی     281
ژنراتورهای القایی    281

 
فصل هفتم :مبدل های حرارتی
مقدمه    283
دسته بندی مبدل های گرمایی     284
مبدل های لوله ای     284
مبدل های گرمایی صفحه ای     294
مبدل های گرمایی با سطوح پره دار     304
کثیف شدن مبدل های حرارتی     309
تغییرات زمانی فاکتور لایه ی جرمی     311
مکانیزم های جرم گرفتگی    314
تأثیر سرعت سیال     321
تأثیر درجه حرارت     322
فاکتور لایه جرمی در عمل      328
 
فصل هشتم: برج خنک کن
برج های خنک کن    331                                                                                                                                      برج های خنک کن تر                                                                                         332                                             
آب جبرانی                                                                                                        334                                        
برج های خنک کن باجریان طبیعی هوا    334                                                                برج های خنک کن باجریان مکانیکی هوا     336                                                         
برج با جریان هوای دمیده شده    336                                                                                                                   
برج باجریان هوای مکیده شده    337                                                                                                        
جدول مقایسه برجها باجریان مکیده شده ودمیده شده    339                                                                                
برج باجریان مکیده شده مخالف ومتقاطع    339                                                                                              
انتخاب نوع برج خنک کن تر    340                                                                                                        
برج های خنک کن خشک    340                                                                     
برج های خنک کن خشک مستقیم    342                                                           
برج های خنک کن خشک غیرمستقیم    343                                                       
برج های خنک کن تروخشک    349                                                                                              
یخ زدگی برج خنک کن    351                                                                                                       
جدول مقایسه برج های خنک کن    352                                                                                               
جدول هزینه های یکساله برج های خنک کن    353                                                                                  
 
فصل نهم :راکتورهای هسته ای
مقدمه      355
انواع راکتور     356
اجزای جانبی راکتورها     363
طراحی راکتور     376
 
فصل دهم : خشک کن ها
مقدمه    380
خشک کن های ثابت    381
خشک کن های ناپیوسته    382
خشک کن های مستقیم    382
خشک کن های غیر مستقیم    383
خشک کن های انجمادی    384
خشک کن های مداوم    385
خشک کن های تونلی     386
خشک کن های بشکه ای    386
خشک کن های پاششی    377
منابع و ماخذ     388

                                                                                                          
قسمت اول
مقدمه
تقریباً در کلیه فرآیندهای شیمیایی، جابجایی سیال(گاز و مایع) صورت می‌گیرد. انرژی لازم برای حرکت سیال توسط پمپ، کپرسور و دمنده تأمین می‌شود. به کمک این دستگاه‌ها می‌توان بر انرژی مکانیکی این دستگاه ها افزود و باعث ازدیاد سرعت، فشار یا ارتفاع آنها شد. لازمة استفادة بهینه از دستگاه های یاد شده، آگاهی به اصول ترمودینامیک و مکانیک سیالات می‌باشد.
از پمپ در جابه جایی سیال مایع، از دمنده در انتقال سیال گازی، از کمپرسور در فشرده‌سازی  و انتقال سیال گازی و از نقاله‌ها و بالابرها  در حمل و نقل پیسوته و مکانیکی مواد جامد استفاده می‌شود و نقاله در هر شکل، اندازه و وزن ( از یک گرم تا چند تن ) کاربرد دارند. در این فصل به منظور آشنایی با دستگاه های انتقال مواد توضیح مختصری پیرامون هر یک ارایه می‌شود. پمپ
دستگاهی است که با دریافت انرژی مکانیکی از یک منبع خارجی، آن را به سیال انتقال می‌دهد. بدین ترتیب انرژی سیال خروجی از پمپ افزایش می‌یابد. از این وسیله برای جابه جایی سیال در مدارهای مختلف هیدرولیکی، شبکه های لوله‌کشی، ارتفاع معین و به طور کلی انتقال سیال از یک نقطه به نقطه دیگر استفاده می‌شود. انرژی مورد نیاز در یک پمپ به عواملی چون ارتفاع سیال جابه جا شده، فشار سیال در مقصد، طول و قطر لوله، سرعت جریان و خواص فیزیکی سیال همچون گرانروی و چگالی بستگی دارد.
کاربرد پمپها در صنایع شیمیایی
کاربرد پمپها در صنایع شیمیایی فراوان می‌باشد؛ در زیر به مواردی از آنها اشاره می‌کنیم.
الف -  پمپ کردن مایعاتی نظیر سولفوریک اسید، محصولات نفتی چون بنزین و نفتا از منبع ذخیره به محل فرآیند،
ب – پمپ کردن سیال به واکنشگاه،
ج- پمپ کردن سیال از مبادله‌کن گرمایی،
د- پمپ کردن واکنش ‌دهنده‌ها به درون واکنشگاه،
هـ -  پمپ آب خنک
و- پمپ نفت خام یا گاز طبیعی برای مسافتهای طولانی.
تقسیم بندی پمپ‌ها
پمپ‌ها براساس نحوة انتقال انرژی  به سیال به قرار زیر تقسیم بندی می‌شوند.
الف- پمپ‌های دینامیکی: انتقال انرژی به سیال در این پمپ‌ها دائمی است. پمپ‌های گریز از مرکز، پمپ‌های محیطی و پمپ‌های خاص از انواع پمپ‌های دینامیکی می‌باشند.
ب- پمپ‌های جابه‌جایی:  انتقال انرژی به سیال در این پمپ‌ها با تناوب صورت می‌گیرد. از انواع آنها می‌توان به پمپ‌های رفت و برگشتی  و پمپ‌های گردشی  اشاره نمود.
تقسیم بندی کاملتری از پمپ‌ها در نمودار 1-1 ارایه شده است.
در ادامة بحث توضیح مختصری پیرامون پمپ‌های گریز از مرکز و رفت و برگشتی ارایده می‌شود. در این پمپ‌ها بیشترین کاربرد را در صنایع شیمیایی دارند.
مقدمه
 در این قسمت به بررسی برخی از اصطلاحات و تعاریف مورد استفاده در هنگام انتخاب پمپ با بحث دربارة طرز کار آن خواهیم پرداخت. اطلاعاتی نیز دربارة ارتفاع مکش
(Suction Lift)، ارتفاع رانش (Discharge Head )، تلفات اصطکاک لوله ها، و تلفات اصطکاک مواد ارائه خواهد شد.
بیشتر این اصطلاحات توسط مهندسی که پمپ را انتخاب یا طراحی می‌کند به کار گرفته می‌شوند. این اصطلاحات همچنین توسط گروه نگهداری و تعمیرات در هنگام بازدید عملکرد پمپ نیز مورد استفاده قرار می‌گیرند. استفاده صحیح از این اصطلاحات در مورد پمپ‌های مختلف اجازه می‌دهد تا همه بفهمند  دربارة چه موضوعی بحث می‌شود.
دانستن اینکه فرسایش عادی لوله‌ها ، خوردگی و تغییرات سیستم لوله‌کشی چه تأثیری بر مقاومت سیال می‌گذارد، حایز اهمیت است. اگر بخواهید کارتان را به نحو مؤثر انجام داده و به دانش خود دربارة تجهیزات مورد استفاده بیفزایید لازم است اصول مربوطه و چگونگی تأثیر آنها بر کار پمپ را درک کنید.
 
مسایل مربوط به پمپ
-    معمولاً هنگامی که یک فرد متخصص نگهداری و تعمیرات برای تعمیر پمپ اعزام می‌گردد، با مشکلاتی از قبیل نشتی، آب بندی و یاتاقان‌ها مواجه می‌شود. گاهی لازم می‌شود کل پمپ عوض شود. شاید خود شما مستقیماً یا هنگامی که به عنوان دستیار کار می‌کردید با این مشکلات برخورد کرده باشید. شما با داشتن این تجربه حماً دریافته‌اید که اگرچه ظاهر پمپ ها ممکن است شبیه هم باشد، اما قطعات داخلی آنها ممکن است کاملاً متفاوت باشند. همچنین می‌دانید که پمپ ها  در صنایع انواع گوناگونی دارند و هریک از آنها ساختمان و طرز کار خاص خود را دارد.
-    بیشتر مشکلات گفته شده جزئی هستند؛ (البته تعویض قطعات داخلی پمپ‌ها ممکن است یک مشکل کلی به شمار آید). اما گاهی اوقات ممکن است از شما خواسته شود پمپی را تعمیر کنید که هیچ نشان ظاهری از خرابی ندارد. این مشکلات می‌تواند ناشی از فشار ناقسمتت آب، وجود هوا در آب، یا عدم توانایی یک پمپ در انتقال آب از یک مخزن به سایر نقاط باشد. در این موارد، تعویض واشر ، یا کاسه نمد یا سایز  قطعات در عملکرد پمپ تأثیری نمی‌گذارد. البته  نخستین اقدامی که باید بکنید بررسی سیستم و حصول اطمینان از کارکرد صحیح سایر قطعات است.
-    برای آنکه عملکرد پمپ را بهتر درک کنید، و نقاط مشکل آفرین را بهتر بشناسید، باید با چند تعریف آشنا شوید. این تعاریف همراه با چند مثال و مسئله در زیر خواهد آمد. اولین گروه این تعاریف به پمپ‌های آبی مربوط می‌شود که بالاتر از سطح آب قرار می‌گیرند. در این حالت مطابق شکل 1-1 ابتندا باید آب را تا سطح پمپ بالا آورد تا سپس توسط پمپ به دیگر نقاط منتقل شود.


دانلود با لینک مستقیم


پایان نامه بررسی انتقال حرارت در وسایل و تجهیزات نیروگاه ( پایان نامه مکانیک سیالات )

دانلود تحقیق ساختار نیروگاه های اتمی جهان

اختصاصی از فی گوو دانلود تحقیق ساختار نیروگاه های اتمی جهان دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق ساختار نیروگاه های اتمی جهان


دانلود تحقیق ساختار نیروگاه های اتمی جهان

هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، کربن، ازت، اکسیژن و... فلزات روی، مس، آهن، نیکل و... و بالاخره آخرین عنصر طبیعی به شماره ۹۲، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به کمک واکنش های هسته ای در راکتورهای اتمی و یا به کمک شتاب دهنده های قوی بیش از ۲۰ عنصر دیگر بسازد که تمام آن ها ناپایدارند و عمر کوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یک عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الکترون تشکیل یافته اند. پروتون بار مثبت و الکترون بار منفی و نوترون فاقد بار است.

تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبی (جدول مندلیف مشخص می کند. اتم هیدروژن یک پروتون دارد و در خانه شماره ۱ جدول و اتم هلیم در خانه شماره ۲ ، اتم سدیم در خانه شماره ۱۱ و... و اتم اورانیوم در خانه شماره ۹۲ قرار دارد. یعنی دارای ۹۲ پروتون است .
ایزوتوپ های اورانیوم
تعداد نوترون ها در اتم های مختلف یک عنصر همواره یکسان نیست که برای مشخص کردن آنها از کلمه ایزوتوپ استفاده می شود. بنابراین اتم های مختلف یک عنصر را ایزوتوپ می گویند . مثلاً عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی که فقط یک پروتون دارد و فاقد نوترون است. هیدروژن سنگین یک پروتون و یک نوترون دارد که به آن دوتریم گویند و نهایتاً تریتیم که از دو نوترون و یک پروتون تشکیل شده و ناپایدار است و طی زمان تجزیه می شود .
ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاه های اتمی کاربرد دارد و از الکترولیز آب به دست می آید. در جنگ دوم جهانی آلمانی ها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه کرده بودند که انگلیسی ها متوجه منظور آلمانی ها شده و مخازن و دستگاه های الکترولیز آنها را نابود کردند .

ساختار نیروگاه اتمی
انواع راکتور
غنی سازی اورانیم
چرا سقف نیروگاه های اتمی گنبدی شکل است؟
SMES یا ابرسانای ذخیره کننده انرژی مغناطیسی چیست؟
 مقدمه
 ابررسانایی:
 ابرسانای ذخیره کننده انرژی مغناطیسی
آب سنگین چیست؟

شامل 39 صفحه فایل word


دانلود با لینک مستقیم


دانلود تحقیق ساختار نیروگاه های اتمی جهان