فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت کامل و جامع با عنوان بردار و آنالیز برداری (انتگرال،مشتق،کرل،گرادیان،دیورژانس) در 120 اسلاید

اختصاصی از فی گوو پاورپوینت کامل و جامع با عنوان بردار و آنالیز برداری (انتگرال،مشتق،کرل،گرادیان،دیورژانس) در 120 اسلاید دانلود با لینک مستقیم و پر سرعت .

پاورپوینت کامل و جامع با عنوان بردار و آنالیز برداری (انتگرال،مشتق،کرل،گرادیان،دیورژانس) در 120 اسلاید


پاورپوینت کامل و جامع با عنوان بردار و آنالیز برداری (انتگرال،مشتق،کرل،گرادیان،دیورژانس) در 120 اسلاید

 

 

 

 

 

آنالیز برداری در مقابل آنالیز اسکالر قرار می گیرد.

در حالت برداری علاوه بر اندازه، جهت نیز اهمیت دارد و به همین دلیل است که به آن برداری می گویند. در این نوع آنالیز مشابه حالت نرده‌ای آن عملیات های اصلی شامل جمع، تفریق، ضرب و تقسیم تعریف می شود که ضرب خود به دو گونهٔ ضرب داخلی و خارجی دسته بندی می شود.

در حسابان بردارها شیو یا گرادیان یک میدان نرده‌ای، میدانی برداری است که مؤلفه‌های آن نرخ تغییر میدان نخستین را در جهت‌های مختلف نشان می‌دهد. جهت خود میدان برداری گرادیان جهت بیشینهٔ تغییرات است.

به تعبیر دیگر برداری که اندازه و جهت حداکثر نرخ فضائی تغییر یک کمیت عددی را نمایش می دهد، گرادیان آن کمیت عددی تعریف می کنیم.\nabla f  = \left(\frac{\partial f}{\partial x_1 }, \dots,  \frac{\partial f}{\partial x_n }  \right)

در حالت خاص برای اسکالر ‎f(x,y,z)‎، گرادیان f در دستگاه کارتزین به صورت زیر نوشته می‌شود:

\mbox{grad}\,f = {\partial f \over \partial x} \mathbf{i} + {\partial f \over \partial y} \mathbf{j} + {\partial f \over \partial z} \mathbf{k} = \nabla f

اگر x و y و z سه مختصه دستگاه مختصات دکارتی باشند، دیورژانس بردار ‎ F(x,y,z) = Fx i + Fy j + Fz k ‏ در مختصات دکارتی به صورت زیر تعریف می‌شود:\operatorname {div}\,{\mathbf  {F}}=\nabla \cdot {\mathbf  {F}}={\frac  {\partial F_{x}}{\partial x}}+{\frac  {\partial F_{y}}{\partial y}}+{\frac  {\partial F_{z}}{\partial z}}.

که در آن ‎ Fx , Fy , Fz ‏ مولفه‌های بردار F در راستای x , y, z است.

به طور کلی در مختصات مایل داریم:

\nabla \cdot {\mathbf  {F}}={{1} \over {h_{1}h_{2}h_{3}}}[{\frac  {\partial }{\partial q_{1}}}(F_{1}h_{2}h_{3})+{\frac  {\partial }{\partial q_{2}}}(F_{2}h_{3}h_{1})+{\frac  {\partial }{\partial q_{3}}}(F_{3}h_{1}h_{2})]

چرخش یا تاو میدان برداری A که با هر یک از نمادهای {\displaystyle {\overrightarrow {\operatorname {rot} }}\ {\vec {\mathrm {A} }}}، {\displaystyle {\boldsymbol {\nabla }}\wedge \mathbf {A} }، {\displaystyle {\boldsymbol {\nabla }}\times \mathbf {A} }،  {\displaystyle {\vec {\nabla }}\wedge {\vec {\mathrm {A} }}}،  {\displaystyle {\vec {\nabla }}\times {\vec {\mathrm {A} }}}، و یا curl A نمایش داده می شود، برداری است که اندازه آن حداکثر گردش خالص A در واحد سطح است وقتی که سطح به سوی صفر میل می‌کند و جهت آن جهت عمود سطح است زمانی که سطح طوری جهت داده شده باشدکه گردش خالص را حداکثر نماید.

یک میدان برداری بدون چرخش، میدان غیر گردشی یا میدان ذخیره شونده نامیده می شود.

اگر بردار v به صورت v(x,y,z) = vx i + vy j + vz k تعریف شده باشد، چرخش v عبارت است از:

{\mbox{curl}}\;{\vec  v}=\left({\partial v_{z} \over \partial y}-{\partial v_{y} \over \partial z}\right){\mathbf  {i}}+\left({\partial v_{x} \over \partial z}-{\partial v_{z} \over \partial x}\right){\mathbf  {j}}+\left({\partial v_{y} \over \partial x}-{\partial v_{x} \over \partial y}\right){\mathbf  {k}}=\nabla \times {\vec  v}

که معادل است با دترمینان ماتریسی که

\nabla \times {\vec  v}=\left|{\begin{matrix}{\mathbf  {i}}&{\mathbf  {j}}&{\mathbf  {k}}\\\\{{\frac  {\partial }{\partial x}}}&{{\frac  {\partial }{\partial y}}}&{{\frac  {\partial }{\partial z}}}\\\\v_{x}&v_{y}&v_{z}\end{matrix}}\right|.

فهرست مطالب:

تعاریف

نمایش بردار در فضا

نمایش مولفه ای بردارها

کسینوس های هادی

جمع و تفریق به روش مولفه ای

ضرب داخلی

زاویه بین دو بردار

کاربردهای ضرب داخلی

ضرب برداری

قانون سینوس ها

ضرب سه گانه بردارها

قاعده بک-کب

حجم متوازی السطوح

میدان های نرده ای و برداری

گرادیان و مشتق جهتی

عملگر گرادیان در مختصات دکارتی

انتگرال برداری

انتگرال خطی یک بردار

انتگرال سطحی

انتگرال حجمی

دیورژانس یا واگرایی

دیورژانس یک تابع برداری

دیورژانس در مختصات دکارتی

قضیه واگرایی گاوس

زاویه فضایی

کرل یا تاو

کرل یک میدان برداری

کرل درمختصات دکارتی

قضیه استوکس

عملگر لاپلاسین

و...

همچنین این فایل با بیش از 70 مثال حل شده می تواند به عنوان یک مرجع آموزشی کامل برای رشته های ریاضی و فیزیک و همچنین مبحث آنالیز برداری الکترومغناطیس استفاده شود.

 


دانلود با لینک مستقیم


پاورپوینت کامل و جامع با عنوان بردار و آنالیز برداری (انتگرال،مشتق،کرل،گرادیان،دیورژانس) در 120 اسلاید

تحقیق درباره تعریف مشتق

اختصاصی از فی گوو تحقیق درباره تعریف مشتق دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره تعریف مشتق


تحقیق درباره تعریف مشتق

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

حجم فایل:  (در قسمت پایین صفحه درج شده )

تعداد صفحات فایل: 5

کد محصول : 001Shop

فروشگاه کتاب : مرجع فایل 


 

 قسمتی از محتوای متن 

 

تعریف مشتق :

 

    مختصات  نقطه ای است ثابت از تابع است و  نقطه ای متحرک از تابع است.

 

 شیب خط

 

    بنابراین با توجه به شکل هنگامی که نقطۀ  به نقطۀ  نزدیک می شود شیب خط  به شیب خط مماس میل می کند بنابراین می توان نوشت:

 

شیب خط مماس بر تابع  در نقطۀ:                                  

 

مشتق تابع  در نقطۀ  به شکل زیر تعریف می شود (همن حد فوق)

 

 

 

                                                                                         

 

    بنابراین مشتق  همان شیب خط مماس بر تابع در نقطۀ  می باشد. اگر حد فوق موجود بود آنگاه می گوییم تابع  مشتق پذیر است و اگر حد فوق موجود نبود تابع  مشتق پذیر نیست.

 

مثال 1- با استفاده از تعریف مشتق تابع  در  را بدست آورید.

 

                                                        

 

 

 

 

 

مثال 2- شیب خط مماس بر تابع  را در نقطۀ  بیابید

 

  متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

پس از پرداخت، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.

 
/images/spilit.png

دانلود با لینک مستقیم


تحقیق درباره تعریف مشتق

تحقیق در مورد مشتق

اختصاصی از فی گوو تحقیق در مورد مشتق دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد مشتق


تحقیق در مورد مشتق

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه15

فهرست مطالب

  تاریخچه

 

  مشتقات مراتب بالاتر

 

  نحوه‌ی نمایش

 

  تابع مشتق‌پذیر در یک نقطه

 

  تابع مشتق‌پذیر

 

  شرایط مشتق‌پذیری

شیب خط مماس در روش لایپ نیتز (خط )

 

مشتق یکی از دو مفهوم اصلی حسابان است که مقدار تغییرات لحظه‌ای تابع را نشان می‌دهد.

 

  تعریف

 

مشتق تابعی مانند f، تابع 'f است که مقدارش در x با معادله‌ی زیر تعریف می‌شود:

 

 

 

به شرطی که این حد موجود باشد.

 

بر طبق این تعریف مشتق مقدار تغییرات مقدار تابع است زمانی که تغییرات به صفر میل می‌کند.

 

  نحوه‌ی نمایش

 

مشتق اول یک تابع تک متغیره را می‌توان به صورت‌های زیر نشان داد:

 

 

 

  • f'(x)
  • f(1)

 

که این نحوه‌ی نمایش را نمایش دیفرانسیلی مشتق می‌نامند.

 

  تاریخچه

 

مشتق از مسائل مهم ریاضی است که موضّع آن نیوتن و لایبنیتز بودند و حد مقدمه آن است. نیوتن سرعت لحظه‌ای را به کمک قوانین حدگیری و لایبنیتز شیب خط مماس بر منحنی‌ها را با استفاده از قوانین حدگیری محاسبه کرد و هر یک در حالت کلی به مشتق رسید.

 

  مشتقات مراتب بالاتر

 

مشتقات مراتب بالاتر یک تابع از تعریف اصلی مشتق بدست می‌آیند. با مشتق گیری دوباره از مشتق یک تابع به مشتق دوم آن می‌رسیم و به همین ترتیب دیگر مشتق‌های مراتب بالاتر نیز تعریف می‌شوند.

 

  نحوه‌ی نمایش

 

مشتقات مراتب بالاتر (مشتق مرتبه دوم، سوم و چهارم) تابع f را می‌توان به دو صورت زیر نمایش داد:

 

  • f'' و f''' و f''''
  • f(2) و f(3) و f(4)

 

 

 

  تابع مشتق‌پذیر در یک نقطه

 

اگر مشتق تابع f در نقطه‌ای مانند x موجود و معین باشد، گفته می‌شود که تابع f در نقطه‌ی x مشتق‌پذیر است.

 

  تابع مشتق‌پذیر

 

اگر تابعی در هر نقطه از دامنه‌اش مشتق‌پذیر باشد، تابع مشتق‌پذیر نامیده می‌شود.

 

  شرایط مشتق‌پذیری

 

برای اینکه تابعی در یک نقطه مانند x مشتق‌پذیر باشد، باید در یک همسایگی آن تعریف شده باشد و نیز در آن نقطه پیوسته باشد. یا به عبارتی تابع در آن نقطه هموار باشد.

مشتق یکی از مهمترین مفاهیم ریاضی است. بوسیله مشتق میتوان برخی از مفاهیم فیزیکی (مانند سرعت و شتاب)با تعاریف ریاضی بیان نمود.
ااگر منحنی یک تابع را در فضای دو بعدی در نظر بگیریم بوسیله مشتق میتوانیم شیب خط مماس بر منحنی را در هر نقطه دلخواه بدست آوریم.همچنین با استفاده از مشتق میتوان خواص هندسی منحنی یک تابع مانند تقعر و تحدب را مشخص کرد.
البته باید به این نکته توجه کرد که هر تابعی در هر نقطه نمیتواند مشتق داشته باشد و به طور کلی

 


دانلود با لینک مستقیم


تحقیق در مورد مشتق

تحقیق در مورد مشتق

اختصاصی از فی گوو تحقیق در مورد مشتق دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد مشتق


تحقیق در مورد مشتق

ًَلینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه34

 

مشتق

مشتق یکی از دو مفهوم اصلی حسابان است که مقدار تغییرات لحظه‌ای تابع را نشان می‌دهد.

تعریف

مشتق تابعی مانند f، تابع 'f است که مقدارش در x با معادله‌ی زیر تعریف می‌شود:

 

به شرطی که این حد موجود باشد.

بر طبق این تعریف مشتق مقدار تغییرات مقدار تابع است زمانی که تغییرات به صفر میل می‌کند.

نحوه‌ی نمایش

مشتق اول یک تابع تک متغیره را می‌توان به صورت‌های زیر نشان داد:

  • f'(x)
  • f(1)

که این نحوه‌ی نمایش را نمایش دیفرانسیلی مشتق می‌نامند.

 

 

 

مثال

تابع

مشتق

شرایط

                            

ou

,

         

تاریخچه

مشتق از مسائل مهم ریاضی است که موضّع آن نیوتن و لایبنیتز بودند و حد مقدمه آن است. نیوتن سرعت لحظه‌ای را به کمک قوانین حدگیری و لایبنیتز شیب خط مماس بر منحنی‌ها را با استفاده از قوانین حدگیری محاسبه کرد و هر یک در حالت کلی به مشتق رسید.

 

 


دانلود با لینک مستقیم


تحقیق در مورد مشتق

تحقیق در مورد مشتق و مفاهیم

اختصاصی از فی گوو تحقیق در مورد مشتق و مفاهیم دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد مشتق و مفاهیم


تحقیق در مورد مشتق و مفاهیم

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه20

 

فهرست مطالب

 

 

مشتق و مفاهیم

خطوط مماس و شیب آنها:

قاعده‌ی زنجیری

71- میزان تغییر ضلع s یک مکعب نسبت به حجم v آن را بیابید. نقاط بحرانی توابع تمرینهای زیر چیست‌اند؟ هر تابع بر چه بازه‌هایی صعودی و نزولی است؟

                                              

72- میزان تغییر طول ضلع یک مربع نسبت به مساحت را وقتی مساحت 16 مترمربع است بیابید.

73- درصد تقریبی تغییرات در تابع داده شده‌ی y=f(x) ناشی از افزایش 2٪ در مقدار x را بیابید.

                                            

74- یک توپ از بالای یک برج 100 متری با سرعت اولیه‌ی 2 متر بر ثانیه به پایین پرتاب شده است. ارتفاع توپ از سطح زمین پس از t ثانیه مساوی است با .. چقدر طول می‌کشد تا به زمین برسد؟ سرعت متوسط آن در مدت سقوط چقدر است؟ در چه لحظه‌ای سرعت توپ با سرعت متوسطش یکی است؟

75- مکان جسمی در زمان t،   است. شتاب جسم را وقتی که سرعت صفر باشد، بیابید.

76- ذره‌ای روی یک محور حرکت می‌کند و موضع آن را تابع  که در آن s بر حسب متر، و t بر حسب ثانیه است به دست می‌دهد. وقتی که t=6 ثانیه، سرعت و شتاب ذره چقدر است؟

77- تابع مفروض است. مطلوبست تعیین نقاطی که در آنها میزان تغییرات تابع مینیمم باشد.

78- سرعت یک متحرک در حرکت مستقیم الخط از دستور   به دست می‌آید. شتاب متحرک را چهار ثانیه بعد از حرکت بیابید.

79- موضع یک ذره‌ی متحرک در امتداد خطی مستقیم در لحظه‌ی   عبارت است از . سرعت و شتاب ذره را در لحظه‌ی t بیابید. چه وقت جهت حرکت ذره تغییر می‌کند؟ چه وقت ذره به موضع اولیه‌ی خود باز می‌گردد؟


دانلود با لینک مستقیم


تحقیق در مورد مشتق و مفاهیم