
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:8
پیشینه منطق فازی
تئوری مجموعههای فازی و منطق فازی را اولین بار پرفسور لطفیزاده (2) در رسالهای به نام <مجموعههای فازی - اطلاعات و کنترل> در سال 1965 معرفی نمود. هدف اولیه او در آن زمان، توسعه مدلی کارآمدتر برای توصیف فرآیند پردازش زبانهای طبیعی بود. او مفاهیم و اصلاحاتی همچون مجموعههای فازی، رویدادهای فازی، اعداد فازی و فازیسازی را وارد علوم ریاضیات و مهندسی نمود. از آن زمان تاکنون، پرفسور لطفی زاده به دلیل معرفی نظریه بدیع و سودمند منطق فازی و تلاشهایش در این زمینه، موفق به کسب جوایز بینالمللی متعددی شده است.
پس از معرفی منطق فازی به دنیای علم، در ابتدا مقاومتهای بسیاری دربرابر پذیرش این نظریه صورت گرفت.
بخشی از این مقاومتها، چنان که ذکر شد، ناشی از برداشتهای نادرست از منطق فازی و کارایی آن بود. جالب اینکه، منطق فازی در سالهای نخست تولدش بیشتر در دنیای مشرق زمین، بهویژه کشور ژاپن با استقبال روبهرو شد، اما استیلای اندیشه کلاسیک صفر و یک در کشورهای مغرب زمین، اجازه رشد اندکی به این نظریه داد. با این حال به تدریج که این علم کاربردهایی پیدا کرد و وسایل الکترونیکی و دیجیتالی جدیدی وارد بازار شدند که بر اساس منطق فازی کارمیکردند، مخالفتها نیز اندک اندک کاهش یافتند.
در ژاپن استقبال از منطق فازی، عمدتاً به کاربرد آن در روباتیک و هوش مصنوعی مربوط میشود. موضوعی که یکی از نیروهای اصلی پیشبرندهِ این علم طی چهل سال گذشته بوده است. در حقیقت میتوان گفت بخش بزرگی از تاریخچه دانش هوش مصنوعی، با تاریخچه منطق فازی همراه و همداستان است.
مجموعههای فازی
بنیاد منطق فازی بر شالوده نظریه مجموعههای فازی استوار است. این نظریه تعمیمی از نظریه کلاسیک مجموعهها در علم ریاضیات است. در تئوری کلاسیک مجموعهها، یک عنصر، یا عضو مجموعه است یا نیست. در حقیقت عضویت عناصر از یک الگوی صفر و یک و باینری تبعیت میکند. اما تئوری مجموعههای فازی این مفهوم را بسط میدهد و عضویت درجهبندی شده را مطرح میکند. به این ترتیب که یک عنصر میتواند تا درجاتی - و نه کاملاً - عضو یک مجموعه باشد. مثلاً این جمله که <آقای الف به اندازه هفتاددرصد عضو جامعه بزرگسالان است> از دید تئوری مجموعههای فازی صحیح است. در این تئوری، عضویت اعضای مجموعه از طریق تابع (u(x مشخص میشود که x نمایانگر یک عضو مشخص و u تابعی فازی است که درجه عضویت x در مجموعه مربوطه را تعیین میکند و مقدار آن بین صفر و یک است (فرمول 1).
به بیان دیگر، (u(x نگاشتی از مقادیر x به مقادیر عددی ممکن بین صفر و یک را میسازد. تابع (u(x ممکن است مجموعهای از مقادیر گسسته (discrete) یا پیوسته باشد. وقتی کهu فقط تعدادی از مقادیر گسسته بین صفر و یک را تشکیل میدهد، مثلاً ممکن است شامل اعداد 3/0 و 5/0 و 7/0 و 9/0 و صفر و یک باشد. اما وقتی مجموعه مقادیرu پیوسته باشند، یک منحنی پیوسته از اعداد اعشاری بین صفر و یک تشکیل میشود.
شکل 1 نموداری از نگاشت پیوسته مقادیر x به مقادیر (u(x را نشان میدهد. تابع (u(x در این نمودار میتواند قانون عضویت در یک مجموعه فازی فرضی را تعریف کند.
منطق فازی چگونه بهکار گرفته میشود؟
منطق فازی را از طریق قوانینی که <عملگرهای فازی> نامیده میشوند، میتوان بهکار گرفت. این قوانین معمولاً بر اساس مدل زیر تعریف میشوند:
IF variable IS set THEN action
به عنوان مثال فرض کنید میخواهیم یک توصیف فازی از دمای یک اتاق ارائه دهیم. در این صورت میتوانیم چند مجموعه فازی تعریف کنیم که از الگوی تابع (u(x تبعیت کند. شکل 2 نموداری از نگاشت متغیر <دمای هوا> به چند مجموعه فازی با نامهای <سرد>، <خنک>، <عادی>، <گرم> و <داغ> است. چنان که ملاحظه میکنید، یک درجه حرارت معین ممکن است متعلق به یک یا دو مجموعه باشد.
تفاوت میان نظریه احتمالات و منطق فازی
یکی از مباحث مهم در منطق فازی، تمیزدادن آن از نظریه احتمالات در علم ریاضیات است. غالباً نظریه فازی با نظریه احتمالات اشتباه میشود. در حالی که این دو مفهوم کاملاً با یکدیگر متفاوتند. این موضوع به قدری مهم است که حتی برخی از دانشمندان بزرگ علم ریاضیات در دنیا - بهویژه کشورهای غربی - درمورد آن با یکدیگر بحث دارند و جالب آن که هنوز هم ریاضیدانانی وجود دارند که با منطق فازی مخالفند و آن را یک سوء تعبیر از نظریه احتمالات تفسیر میکنند.
از نگاه این ریاضیدانان، منطق فازی چیزی نیست جز یک برداشت نادرست از نظریه احتمالات که به گونهای غیرقابل قبول، مقادیر و اندازهگیریهای نادقیق را وارد علوم ریاضیات، مهندسی و کنترل کرده است. بعضی نیز مانند Bruno de Finetti معتقدند فقط یک نوع توصیف از مفهوم عدمقطعیت در علم ریاضیات کافی است و چون علم آمار و احتمالات وجود دارد، نیازی به مراجعه به منطق فازی نیست.
این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
دانلود تحقیق کامل درمورد پیشینه منطق فازی