فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه مهندسی نرم افزار تجزیه و تحلیل سیستم آزمایشگاه تشخیص طبی با مایکروسافت ویزیو Microsoft Visio

اختصاصی از فی گوو پروژه مهندسی نرم افزار تجزیه و تحلیل سیستم آزمایشگاه تشخیص طبی با مایکروسافت ویزیو Microsoft Visio دانلود با لینک مستقیم و پر سرعت .

پروژه مهندسی نرم افزار تجزیه و تحلیل سیستم آزمایشگاه تشخیص طبی با مایکروسافت ویزیو Microsoft Visio


پروژه مهندسی نرم افزار تجزیه و تحلیل سیستم آزمایشگاه تشخیص طبی با مایکروسافت ویزیو Microsoft Visio

پروژه مهندسی نرم افزار تجزیه و تحلیل سیستم آزمایشگاه تشخیص طبی با مایکروسافت ویزیو Microsoft Visio

نتایج تجزیه و تحلیل و طراحی سیستم بر اساس متدولوژی ساخت یافته (SSADM)

فهرست مطالب
معرفی تهیه کننده
شرح مساله
ماموریت و اهداف
نمودار بستر  Context Diagram یا همان DFD سطح صفر
نمودار گردش جریان داده ها سطح 1 یا همان DFD 1
نمودار گردش جریان داده ها سطح 2 یا همان DFD 2
نمودار رابطه بین موجودیت ها ERD
توصیف فرآیند پذیرش آزمایشات
توصیف فرآیند حسابرسی آزمایشات
توصیف فرآیند تحویل آزمایش
توصیف فرآیند انجام آزمایش های تخصصی
توصیف فرآیند گرفتن نمونه
توصیف فرآیند بررسی و تامین نیازمندی ها

آنچه تحویل داده می شود:

1. فایل های Microsoft Visio مربوط به کلیه نمودارهای آورده شده

2. داکیومنت توضیحات با فرمت های  docx و vsd به صورت بخش بخش  در 17صفحه (البته توجه داشته باشید که برخی از صفحات نمودارها در سایزهای A3 و A2 (مثلاً نمودار ERD که یک صفحه A2 است) می باشند) همانند نمونه تصویر آورده شده و قابل ویرایش (فایل PDF هم موجود است)، داکیومنت بسیار کامل می باشد

 

قسمتی از صفحات داکیومنت را می توانید در تصاویر زیر ملاحظه نمایید (نمایش استایل داکیومنت، داکیومنتی که تحویل داده می شود بدون متن های تبلیغاتی می باشد):

پروژه مهندسی نرم افزار نمونه 1

قسمتی از نمودار ERD

می توان به عنوان پروژه یا تحقیق یا تمرین مهندسی نرم افزار 1، مهندسی نرم افزار 2، مهندسی نرم افزار، مهندسی نرم افزار پیشرفته (دوره کارشناسی ارشد)، تجزیه و تحلیل سیستم ها، طراحی و تجزیه و تحلیل سیستمها و غیره استفاده نمود. مهندس مهدی آقایی بناد کوکی دکتر مهدی آقایی بناد کوکی

پس از خرید از درگاه امن بانکی، لینک دانلود در اختیار شما قرار میگیرد و همچنین به آدرس ایمیل شما فرستاده می شود.

تماس با ما برای راهنمایی، درخواست مقالات و پایان نامه ها و یا ترجمه و یا انجام پروژه های برنامه نویسی و حل تمرینات و انجام پروژه های موازی با استفاده از MPI با آدرس ایمیل:

ebarkat.shop@yahoo.com

یا شناسه تلگرام (آی دی تلگرام ما): @ebarkat

توجه: اگر کارت بانکی شما رمز دوم ندارد و یا در خرید الکترونیکی به مشکل برخورد کردید و یا به هر دلیلی تمایل به پرداخت الکترونیکی ندارید با ما تماس بگیرید تا راههای دیگری برای پرداخت به شما پیشنهاد کنیم.

هرگونه کپی برداری و فروش فایل های فروشگاه برکت الکترونیک (به آدرس ebarkat.ir یا ebarkat.sellfile.ir) در فروشگاه های دیگر شرعاً حرام است، تمامی فایل ها و پروژه های موجود در فروشگاه، توسط ما اجرا و پیاده سازی شده اند و دارای حق کپی رایت اسلامی می باشند.

از پایین همین صفحه (بخش پرداخت و دانلود) می توانید این پروژه را خریداری و دانلود نمایید.


دانلود با لینک مستقیم


پروژه مهندسی نرم افزار تجزیه و تحلیل سیستم آزمایشگاه تشخیص طبی با مایکروسافت ویزیو Microsoft Visio

ترجمه تخصصی مقاله ی تشخیص چهره به زبان فارسی

اختصاصی از فی گوو ترجمه تخصصی مقاله ی تشخیص چهره به زبان فارسی دانلود با لینک مستقیم و پر سرعت .
ترجمه تخصصی مقاله ی تشخیص چهره به زبان فارسی

ترجمه تخصصی مقاله ی تشخیص چهره به زبان فارسی

ترجمه ی مقاله ی تشخیص چهره ی A comparative study on illumination preprocessing in face recognition به زبان فارسی با 50% تخفیف ویژه فقط برای 5 خریدار اول.

 

 

 

اطلاعات کامل پروژه ی ترجمه شده:

تیتر انگلیسی پروژه:

A comparative study on illumination preprocessing in face recognition

تیتر فارسی:

بررسی تحلیلی پیش پردازش روشنایی در تشخیص چهره

حجم:

1.500mb

تعداد صفحات:

صفحات زبان اصلی:11 صفحه به صورت فشرده و با تصویر

صفحات ترجمه شده:17 صفحه بدون تصویر

اطلاعات دیگر:

3 فایل PDF

1 فایل WORD

قابل ویرایش با ورد 2010 و نسخه های بالاتر

________________________________________________________

دانلود کامل مقاله ی انگلیسی A comparative study on illumination preprocessing in face recognition

 

 

 توجه:

1-فایل بالا فقط نسخه ی انگلیسی پروژه می باشد.برای خرید ترجمه ی کامل این پروژه باید آن را خریداری کنید.

2-شما می توانید 100 دفعه دانلود کنید. و 7200 دقیقه وقت دارید فایل ها را دانلود کنید.


دانلود با لینک مستقیم


ترجمه تخصصی مقاله ی تشخیص چهره به زبان فارسی

ارائه مدل مقایسه ای بر پایه ارزیابی عملکرد روشهای تشخیص وتفکیک عیوب متداول جعبه دنده ها

اختصاصی از فی گوو ارائه مدل مقایسه ای بر پایه ارزیابی عملکرد روشهای تشخیص وتفکیک عیوب متداول جعبه دنده ها دانلود با لینک مستقیم و پر سرعت .

ارائه مدل مقایسه ای بر پایه ارزیابی عملکرد روشهای تشخیص وتفکیک عیوب متداول جعبه دنده ها


ارائه مدل مقایسه ای بر پایه ارزیابی عملکرد روشهای تشخیص وتفکیک عیوب متداول جعبه دنده ها

این پایان نامه با فرمت pdf اراده میشود 

 از زمانی که استفاده از ماشینآلات دوار در صنایع مختلف آغاز شد بحث نگهداری و تعمیرات آنها نیز به دغدغه

 صاحبان صنایع تبدیل شد چرا که بروز عیب و گسترش آن ممکن است منجر به از کار افتادن سیستم شده و

 خسارت زیادی را به بار آورد . مسأله عیبیابی از زمانهای نسبتاً دور توجه محققان را به خود جلب کرده است و در

 پی آن روشهایی برای تشخیص عیوب در بلبرینگها، جعبه دندهها و سایر سیستمهای مکانیکی ابداع شده است. با

 گذشت زمان، روشهای عیبیابی نیز سیر تکاملی را پیموده و از روشهای اولیه بسیار سادهای چون گوش دادن به

 صدای منتقل شده از یک بلبرینگ یا جعبه دنده توسط یک پیچ گوشتی در حال تماس با آن، به روشهای پیچیده و

 بسیار دقیق کنونی ارتقاء یافتهاند. نگهداری و تعمیرات شاخه ای از تکنولوژی جدید است که در طول 58 سال

گذشته به طور شگرفی متحول شده است. علت این تحول شگرف، تنوع و پیچیدگی زیاد ماشینالات جدید صنعتی و

ضرورت همگامی روشهای جدید نگهداری با عملکرد تجهیزات صنعتی است.


دانلود با لینک مستقیم


ارائه مدل مقایسه ای بر پایه ارزیابی عملکرد روشهای تشخیص وتفکیک عیوب متداول جعبه دنده ها

دانلود مقاله درمان انفرادی سرطان: تشخیص مولکولی، بیومارکر های پیش بینی کننده و مقاومت دارویی

اختصاصی از فی گوو دانلود مقاله درمان انفرادی سرطان: تشخیص مولکولی، بیومارکر های پیش بینی کننده و مقاومت دارویی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله درمان انفرادی سرطان: تشخیص مولکولی، بیومارکر های پیش بینی کننده و مقاومت دارویی


دانلود مقاله درمان انفرادی سرطان: تشخیص مولکولی، بیومارکر های پیش بینی کننده و مقاومت دارویی

 

 

 

 

 

 

 

مشخصات نویسندگان مقاله درمان انفرادی سرطان: تشخیص مولکولی، بیومارکر های پیش بینی کننده و مقاومت دارویی

سارا ملیح - دانشجوی کارشناسی ارشد بیوتکنولوژی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی همدان
مسعود سعیدی جم - دانشیار گروه پزشکی مولکولی و ژنتیک، دانشکده پزشکی، دانشگاه علوم پزشکی همدان
نرگس ملیح - دستیار پزشکی اجتماعی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید بهشتی

چکیده مقاله:

در دهه اخیر، درمان انفرادی، انقلابی در درمان سرطان ایجاد کرده است. درمان انفرادی به معنای بکارگیری دانش ژنومیک و دیگر مطالعات آزمایشگاهی برای انتخاب درمان مناسب برای یک فرد بیمار است. توسعه روش های نوین توالی یابی با بازده بالا امکان طبقه بندی زیرمجموعه های مولکولی تومور، شناسایی بیومارکرهای جدید و تولید داروهای هدفمند به منظور افزایش اثربخشی درمان و کاهش عوارض جانبی آن را فراهم آورده است در این مقاله مروری به بحث درباره چالش های پیش روی درمان انفرادی سرطان، تشخیص مولکولی، بیومارکرهای پیش بینی کننده و مکانیسم مقاومت دارویی در برابر درمان های هدفمند خواهیم پرداخت.

کلیدواژه‌ها:

پزشکی انفرادی، درمان هدفمند، فارماکوژنومیک، مقاومت دارویی، بیومارکر


دانلود با لینک مستقیم


دانلود مقاله درمان انفرادی سرطان: تشخیص مولکولی، بیومارکر های پیش بینی کننده و مقاومت دارویی

دانلود مقاله مروری بر سیستم تشخیص گفتار و کاربرد آن

اختصاصی از فی گوو دانلود مقاله مروری بر سیستم تشخیص گفتار و کاربرد آن دانلود با لینک مستقیم و پر سرعت .

 

 

 

چکیده:
سیستم تشخیص گفتار نوعی فناوری است که به یک رایانه این امکان را می دهد که گفتار و کلمات گوینده را بازشناسی و خروجی آنرا به قالب مورد نظر، مانند "متن"، ارائه کند. در این مقاله پس از معرفی و ذکر تاریخچه‌ای ازفناوری سیستم ها تشخیص گفتار، دو نوع تقسیم بندی از سیستمها ارائه می شود، و سپس به برخی ضعف ها و نهایتاً کاربرد این فناوری اشاره می شود.
کلید واژه ها: سیستمهای تشخیص گفتار، فناوری اطلاعات، بازشناسی گفتار

 

1. مقدمه
گفتار برای بشر طبیعی ترین و کارآمدترین ابزار مبادله اطلاعات است. کنترل محیط و ارتباط با ماشین بوسیله گفتار از آرزوهای او بوده است.طراحی و تولید سیستم های تشخیص گفتار هدف تحقیقاتی مراکز بسیاری در نیم قرن اخیر بوده است.یکی از اهداف انسانها در تولید چنین سیستم هایی مسلماً توجه به این نکته بوده است که "ورود اطلاعات به صورت صوتی ،اجرای دستورات علاوه بر صرفه جویی در وقت و هزینه ،به طرق مختلف کیفیت زندگی ما را افزایش می دهند.امروزه دامنه ای از نرم افزارها (که تحت عنوانSpeech Recognition Systems معرفی می شوند) وجود دارند که این امکان را برای ما فراهم کرده اند.با استفاده از این تکنولوژی می توانیم امیدوار باشیم که چالش های ارتباطی خود را با محیط پیرامون به حداقل برسانیم.

 

2.تعریف
قبل از پرداختن به به سیستم های تشخیص گفتار لازم است که فناوری تولید گفتار و تشخیص گفتار با تعریفی ساده از هم متمایز شوند:
● فناوری تولید گفتار(Text To Speech):تبدیل اطلاعاتی مثل متن یا سایر کدهای رایانه ای به گفتاراست.مثل ماشین های متن خوان برای نابینایان،سیستم های پیغام رسانی عمومی. سیستم های تولید گفتار به خاطر سادگی ساختارشان زودتر ابداع شدند. این نوع از فناوری پردازش گفتار موضوع مورد بحث در این مقاله نیستند.

● فناوری تشخیص گفتار(Speech Recognition System ): نوعی فناوری است که به یک کامپیوتراین امکان را می دهد که گفتارو کلمات گوینده ای را که از طریق میکروفن یا پشت گوشی تلفن صحبت می کند،بازشناسی نماید. به عبارت دیگر در این فناوری هدف خلق ماشینی است که گفتار را به عنوان ورودی دریافت کند و آنرا به اطلاعات مورد نیاز (مثل متن)تبدیل کند.

 

3.تاریخچه فناوری تشخیص گفتار
اولین سیستم های مبتنی بر فناوری تشخیص گفتار در سال 1952 در"آزمایشگاههای بل"طراحی شد.این سیستم به شیوه گفتار گسسته و به صورت وابسته به گوینده و با تعداد لغت محدود 10 لغت عمل می کرد.در اوایل دهه 80 میلادی برای اولین بار الگوریتم مدلهای مخفی مارکوف "Hidden Markov Model" ارائه شد.این الگوریتم گامی مهم در طراحی سیستم های مبتنی بر گفتار پیوسته به حساب می آمد.همچنین در طراحی این سیستم از مدل شبکه عصبی و نهایتاً ازهوش مصنوعی نیز استفاده می شود.در ابتدا شرکتهای تجاری این فناوری را برای کاربردهای خاصی طراحی کردند.به عنوان مثال شرکت Kurzweil در زمینه پزشکی و مخصوصاً برای کمک به معلولان و نابینایان و شرکت Dragon در زمینه خودکارسازی سیستمهای اداری محصولات اولیه وارد بازارکردند. توانجویان در واقع اولین گروهی بودند که از این دسته محصولات به عنوان یک فناوری انطباقی و یاریگر،عمدتاً برای دو عملکرد کنترل محیط و واژه پردازی استفاده کردند.
جیمز بیکر James K.Baker یکی از محققان شرکت IBM که در اواخر دهه 1970 در مورد این فناوری مقالات زیادی نوشت، یکی از پیشگامان این طرح بود.او و همکارانش یک شرکت خصوصی به نام Dragon Systems تاسیس کردند.این شرکت ابتدا در دهه 1990 نرم افزاری به نام Dragon Dictate تولید کرد که یک سیستم مبتنی بر گفتار گسسته بود.در سال 1997 این شرکت محصولی را تولید کرد که به جای استفاده از گفتارگسسته ،مبتنی بر گفتار پیوسته بود.در واقع این شرکت با ارائه نرم افزار Dragon Naturally Speaking (DNS) اولین سیستم تشخیص گفتار پیوسته را ارائه نمود.این سیستم توانایی تشخیص گفتار با سرعت 160 کلمه در دقیقه را داشت.همچنین شرکت تجاری IBM هم در این زمینه برای سالهای متمادی فعالیت می کرد که با طراحی بسته نرم افزاری Via Voice به ارائه سیستم های تشخیص گفتار پرداخت که در حال حاضر Scansoft محصولات IBM Via Voice راتوزیع و پشتیبانی می کند.شرکت مایکروسافت نیز فعالیتهایی درجهت تولید و کاربرد این فناوری داشته است،و بیل گیتس Bill Gates در کتابها و سخنرانی هایش به کرات در مورد آینده درخشان استفاده از سیستم های تشخیص گفتار تاکید کرده است. البته عملاً تا قبل از ارائه نرم افزار office XP وword 2002 این تکنولوژی در محصولات این شرکت بکاربرده نشد.گرچه در ابتدا عمده موارد استفاده این تکنولوژی ،برای افراد توانجو پیش بینی شده بود اما بعدها پذیرش استفاده از آن گسترده تر شد و گروههای بسیاری در مدارس و دانشگاهها علاقه مند به استفاده ازاین فناوری شدند. بطوریکه Seton Hall University نیز برای تشویق دانشجویان به آشنایی با این سیستم به دانجشویان جدید الورود نرم افزار IBM Via Voice را اهدا می کرد.

 

4.عملکرد سیستم های تشخیص گفتار
سیستم های تشخیص گفتار به هر منظور که بکار برده شوند، عملکرد نسبتاً مشابهی دارند که عبارت است از:تبدیل گفتاربه داده و تحلیل آن توسط مدلهای آماری.

 


شکل 1

 

1.4 تبدیل گفتاربه داده
برای تبدیل گفتار به یک متن روی صفحه یا یک فرمان کامپیوتری، یک سیستم باید راه دشواری را طی کند.وقتی که گوینده صحبت می کند،لرزشهایی در هوا ایجاد می شود،سیستم تشخیص گفتار ابتدا امواج صوتی آنالوگ را دریافت می کند،مبدل آنالوگ به دیجیتال Analog-to-digital converter (ADC) این امواج آنالوگ را به داده های دیجیتالی تبدیل می کند. سپس سیگنال به سگمنت های کوچکی که به اندازه چند صدم ثانیه یا در مورد صداهای Plosive Consonant چند هزارم یک ثانیه هستند،تقسیم می شود. در مرحله بعد برنامه این سگمنت ها را به phoneme های شناخته شده در زبان تبدیل می کند.Phoneme ،کوچکترین عنصریک زبان است (ارائه ای از صداهایی که ما می سازیم و برای شکل دادن واژه های معنی دار آنها را در کنار هم قرار می دهیم).گام بعدی ساده به نظر می رسد اما در واقع انجام آن بسیار دشوار است .برنامه Phoneme های موجود را با سایر Phoneme هایی که درکنار آن قرار دارد،امتحان می کند و Phonemeهای هم بافت را از طریق یک مدل آماری بسیار پیچیده نقطه (plot) می کندو آنها را با مجموعه بزرگی متشکل از واژه های شناخته شده،عبارات و جملات مقایسه می کند.برنامه سپس چیزی را که کاربر احتمالاً گفته است مشخص می کند و آن را به عنوان متن یا شکل یک فرمان کامپیوتری یا صوت بیرون می دهد.

 

2.4 تشخیص گفتار با استفاده از مدل(الگوریتم)آماری
سیستم های تشخیص گفتار اولیه سعی داشتند مجوعه ای از قوانین گرامری و دستوری را با گفتار ورودی منطبق کنند. به این صورت که اگر کلمه های گفته شده در داخل مجموعه ای از قواعد و قوانین جای می گرفتند و با آن سازگار می شدند،برنامه می توانست کلمه را تشخیص دهد. تنوع لهجه ها ونوع گفتار افراد مختلف در این حالت از تشخیص می توانست تاثیر منفی بر روی دقت این سیستم ها بگذارد. به عنون مثال تلفظ کلمه barn توسط فردی از بوستون و لندن متفاوت است در حالی که هر دو یک لغت را بکار برده اند.سیستم ها مبتنی بر قواعد و قوانین دستوری به این دلیل موفق نبودند که نمی توانستند گفتار ممتد را با حداقل میزان اشتباه تشخیص دهند.
سیستم های تشخیص گفتار امروزی از سیستم های مدل آماری بسیار قدرتمند و پیچیده ای استفاده می کنند.این سیستم ها از قواعد احتمالات وریای برای تشخیص نتیجه استفاده می کنند. دو مدل مسلط امروز در این حوزه مدل مخفی مارکوف "Hidden Markov Model" و مدل شبکه عصبی"Neural Netwok Model" هستند.این روشها اساساً برای مشخص کردن اطلاعات پنهان از سیستم،از اطلاعاتی که برای سیستم شناخته شده هستند استفاده می کنند. مدل Hidden Markov رایج ترین مدل است.در این مدل هرPhoneme مثل یک پیوند در یک زنجیره است و هنگامی این زنجیره تکمیل می شود،یک کلمه بوجود می آید.در طی این فرایند، برنامه یک score احتمالات را بر اساس دیکشنری توکار و آموزش کاربر به هر Phoneme اختصاص می دهد. این فرایند برای عبارات و جملات،حتی از این هم پیچیده تر است. (سیستم مجبور است مشخص کند که هر کلمه کجا شروع می شود و کجا به اتمام می رسد). گاهی برنامه ناچار است عباراتی را که شنیده است را با عبارت یا عبارت های قبل ار آن که در بافت جمله هستند مقایسه کند،آنرا تجزیه و تحلیل کند تا بتواند آنرا به درستی تشخیص دهد.بنابراین اگر یک برنامه دارای 60000 کلمه باشد ترتیبی از سه کلمه می تواند هر یک از 216 تریلیون احتمال ممکن باشد.بدیهی است که حتی قدرتمندترین سیستم هم نمی تواند بدون کمک،تمام این احتمالات را جستجو کند. این کمک به شکل"آموزش"برنامه ارائه می شود.با وجود اینکه توسعه دهندگان و طراحان نرم افزار که دستگاه واژگانی اصل سیستم را تنظیم می کنند،بخش اعظمی از این آموزش را انجام می دهند اما کاربر نهایی نیز باید زمان زیادی را صرف این آموزش کند.

5.سیستم های تشخیص گفتار:تقسیم بندی بر اساس عملکرد
فناوری تشخیص گفتار بر اساس سه معیارقابل بررسی و طبقه بندی است:
الف.تعدادگویندگان
ب.شیوه صحبت کردن
ج.اندازه بانک واژگان
که در ادامه به توضیح هر یک پرداخته می شود.

 

1.5 تعداد گویندگان
همانطور که قبلاً نیز اشاره شد،درونداد اطلاعات در این سیستم به صورت صوتی-گفتار انسان- است.بسته به اینکه سیستم برای استفاده تعداد محدودی گوینده طراحی شده باشد یا نه ،این سسیستم به دو دسته"وابسته به گوینده" و "مستقل از گوینده" تقسیم می شوند.
در سیستم های وابسته به گوینده،سیستم هر صدایی را تشخیص نمی دهد بلکه فقط صداهایی که قبلاً آنها را آموزش دیده است را تشخیص می دهد.بدین صورت که شخص با ایجاد یک پروفایل صوتی از صدای خود،صدای خود را به سیستم آموزش می دهد و سیستم نیز با مراجعه به این پروفایل بار دیگر آن را تشخیص می دهد.این سیستم ها دقیق ترند. اما سیستم های مستقل از گوینده طوری طراحی می شوند که سیستم قادر باشد هر نوع صدایی را تشخیص دهد.

 

2.5 شیوه صحبت کردن
نحوه صحبت کردن گوینده می تواند به دو صورت "گفتار گسسته" و یا "گفتار پیوسته" باشد. در سیستم های مبتنی بر گفتار گسسته گوینده کلمات را جدا جدا و با مکث حداقل 200 میلی ثانیه بین آنها ادا می کند تا سیستم کلمات را بصورت مجزا تشخیص دهد. در این نوع از سیستم بانک واژگان شامل کلماتی است که برای سیستم از قبل تعریف شده است. وقتی که سیستم مبتنی بر گفتار پیوسته باشد،مرز کلمات گوینده واضح نیست که در این صورت برای انطباق گفتار با بانک واژگان، بانک واژگان از "واجهای" زبان تعریف شده تشکیل شده است.

 

3.5 اندازه بانک واژگان
اندازه بانک واژگان ، از نظر واژگان ذخیره شده در سیستم " محدود" ویا "بزرگ" است. که بین نوع سیستم از نظر وابستگی به گوینده و اندازه بانک واژگان رابطه معکوس وجود دارد.در سیستم های وابسته به گوینده اندازه بانک واژگان بزرگ و تعداد کاربر کم است. این نوع سیستم ها که معمولا در محیط های تجاری بکار گرفته می شوند و تعداد کمی کاربر با این برنامه کار می کنند به بهترین نحو ممکن جوابگو هستند. در حالی که این سیستم ها با سطح دقتی مناسب کار می کنند و دارای هزاران کلمه هستند باید طوری تنظیم شوند که با تعداد کوچکی از کاربران اصلی کار کنند و میزان دقت این سیستم ها تا حد بسیار زیادی به کاربر بستگی دارد. در سیستم هایی که مستقل از گوینده عمل می کنند،تعداد کاربران زیاد است اما تعداد واژاگان اندک است. در این سیستم ها کاربران می توانند با لهجه ها و الگوهای گوناگون تلفظ صحبت کنند هرچند،استفاده از این سیستم ها محدود به تعداد اندکی از فرامین و ورودی های از پیش تعریف شده نظیر گزینه های ابتدایی و اعداد است.

6.سیستم های تشخیص گفتار:تقسیم بندی بر اساس برونداد
سیستم های تشخیص گفتار همگی در یک ویژگی مشترک هستند و آن "لزوم درونداد به صورت صوتی" در این گونه سیستم هاست.این سیستم ها را بر اساس بروندادی که ارائه می کنند می توانیم به سه دسته تقسیم بندی کنیم:
الف.سیستم های گفتار به متنSpeech To Text
ب. سیستم های گفتار به گفتارSpeech To Speech
ج.سیستم های گفتار به فرامین Speech To Command
که در ادامه هریک به طور مختصر معرفی می شوند.

 

1.6 گفتار به متن Speech To Text
این دسته از سیستم ها توانایی تبدیل گفتار به متن یا تشخیص خودکار گفتار را دارند.از این تکنولوژی برای "دیکته کردن و ایجاد مدرک" استفاده می شود.از آنجایی که تایپ کامپیوتری از کارهای متداول و وقت گیربرای کاربرهای عادی و پیشرفته می باشد بنابراین اولین موارد استفاده از این تکنولوژی ،تایپ کامپیوتری بوده است که باعث افزایش سهولت و سرعت تایپ می شده است مثل کاربرد این سیستم برای روزنامه نگاران و حقوقدانان. این امر به ویژه زمانی که افراد ملزم به تایپ مکرر هستند اهمیت پیدا می کند زیرا بیماری Carpal Tunnel Syndrome (سندرم کانال مچی) که یکی از انواع آسیب های ناشی از تکرار می باشد در اثر استفاده تکرار شونده از کیبورد برای تایپ پدید می آید. با استفاده از سیستم های تشخیص صدا و تایپ با کیبورد به طور همزمان می توان از بروز اینگونه آسیب ها جلوگیری کرد.همچنین افراد توانجو یا کسانی که به هر نحو قادر به تایپ کردن نمی باشند، می توانند خود را با یان سیستم ها تطبیق دهند و از آنها بطور موثری استفاده کنند(به عنوان مثال افرادی که قادر به استفاده از دستان خود نیستند،یا از لحاظ بینایی دچار مشکل هستند). حتی گزارش شده است که استفاده از یک نرم افزار تشخیص صدا به یک مرد مبتلا به بیماری "زبان پریشی" کمک کرده است که بتواند عقایدش را در قالب زبان نوشتاری بیان کند و با اطرافیان خود ارتباط برقرار کند.برخی نرم افزارها در زیر برای آشنایی معرفی می شوند:


شکل 2

 

IBM Via Voice (IBM Voice Dictation for Linux)
● تنها نرم افزاری است که سیستم عامل لینوکس را پشتیبانی می کند

 

Myers Hidden Markov Model Software
● نرم افزاری است که توسط ریچارد می یر با الگوی HMM نوشته و طراحی شده است و برای کاربران حرفه ای کاربرد دارد.
فناوری استفاده شده در ویندوز ویستا
فناوری استفاده شده در ویندوز XP
● که در قالب برنامه های word xp و word 2002 به بعد، ارائه شده است.

نرم افزار دیکته خودکار فارسی/انگلیسی نویسا
● یک نرم افزار تشخیص گفتار به دو زبان فارسی و انگلیسی بدون وابستگی به گوینده است که توسط گروه SPl (Speech processing Lab) در دانشگاه صنعتی شریف طراحی و تولید شده است. کاربرمی تواند از این نرم افزار در هر ویرایشگری در محیط ویندوز استفاده کند.

 

2.6 گفتار به گفتار Speech To Speech
سیستم های گفتار به گفتار شامل استفاده از فناوری تشخیص گفتارعمدتاً در تولید نرم افزارهای ترجمه گفتار به گفتار می باشد.شرکت Via یک تولید کننده کامپیوترهای پوشیدنی است. این شرکت یک مترجم زبانی را توسعه داده است که در اختیار انگلیسی زبانان قرار گرفته است که البته این محصول در تعداد انبوه وارد بازارنشده است.نام این ابزار که نوعی سخت افزار است ،"ابزار مترجم جهانی Via II" می باشد ،وسیله ای است به اندازه یک گوشی تلفن با عملکرد PC که به کمر کاربر متصل می شود یا در جیب لباس وی قرار می گیرد.Via II با یک نرم افزار تشخیص صدا سازگار است و با داشتن در گاه USB حتی امکان اتصال به ادوات جانبی را هم دارا است.این ابزار با قدرت شناسایی مجموعه گسترده ای از زبانها نظیر کره ای،صربستانی،عربی،تایلندی،چینی،و... ارائه می شود .این سیستم برای کاربران انگلیسی زبان طراحی شده است که قادر است صدای کاربر را شناسایی کندو به زبان مقصد ترجمه کندو از طریق بلندگو پخش کند و همچنین در مدت زمان کوتاهی قادر است که پاسخ فرد مخاطب را به انگلیسی ترجمه کند که به این ترتیب یک ترجمه دو طرفه انجام می شود.


شکل 3


آژانس پروژه های تحقیقاتی پیشرفته دفاعی دارای سه تیم از محققانی است که بر روی Global Autonomous Language Exploitation یا (GALE) که برنامه ای که اطلاعات روزنامه ها و اخبار پخش شده در زبانهای خارجی را ترجمه می کند،کار می کنند. این پروژه امیدوار است که بتواند نرم افزاری ایجاد کند که بتواند دو زبان را با حداقل 90 درصد دقت به یکدیگر ترجمه کند.این آژانس همچنین بر روی یک پروژه تحقیقی و توسعه به نام TRANSTAC سرمایه گذاری کرده است که سربازان ایالات متحده امریکا را قادر می کند به شکل موثرتری با جمعیت غیر نظامی کشورهای غیر انگلیسی زبان به تعامل بپردازند.
موارد بالا نمونه هایی از تلاش محققان جهان برای توسعه این فناوری بودند.در ایران و برای کاربران فارسی زبان نیر "نرم افزار پارسیا" طراحی و تولید شده است که یک نرم افزار ترجمه صوتی(گفتار به گفتار) زبان فارسی است و عبارات رایج و مکالمات روزمره فارسی را به زبانهای مقصد (انگلیسی و عربی) ترجمه می کند. این نرم افزار توسط گروه SPL دانشگاه صنعتی شریف طراحی و تولید شده است.

3.6 گفتار به دستور Speech To Command
از این نوع فناوری برای کنترل برنامه ها (computer control) استفاده می شود. با استفاده از این فناوری کاربر می تواند با ادا کردن دستورات آنها را انجام دهد. تقریباً اولین گروهی که روی به استفاده از این فناوری آوردند خلبانان بودند. خلبانان در اتاقک پرواز با استفاده از این سیستم ها علاوه کمک به کنترل امور پرواز بدون نیاز به دست، استرس ناشی از پرواز را کاهش می دادند. همچنین استفاده از این فناوری درحوزه های مشابه مانند فضا نوردی وهوانوردی نیزآزمایش شده است. علاوه بر این توانجویان به طور وسیع این فناوری را به عنوان ابزاری برای کنترل محیط و انطباق بیشتر با آن بکار بردند. به عنوان مثال توانجویان حرکتی قادر خواهند بود با کمک این فناوری دستورات حرکتی به صندلی چرخدار خود بدهند.یا حتی -در ایده ال ترین وضعیت- به کمک کار گذاشتن تراشه های هوشمند و سازگار با فناوری تشخیص صدا در عضو مصنوعی به دست و پای مصنوعی خود فرمانهای حرکتی متنوع صادرکنند.


شکل 4

با استفاده از این فناوری کاربر می تواند با گفتن جملات دستوری مانند" فایل را باز کن" یا "صفحه راببند" برنامه های مختلف کامپیوتری رانیزکنترل کند. از این فناوری به همراه قابلیت Speech To Text در برخی سیستم های عامل استفاده شده است. برخی از نرم افزارها در زیر آورده شده اند:

 

C Voice Control (Consol Voice Control)
در سیستم عامل لینوکس استفاده می شود و امکان اجرای دستورات را بوسیله فرامین صوتی فراهم می کند.
Game Commander
برنامه ای است مستقل از گوینده و بدون نیاز به آموزش که با ایجاد فرمانهای صوتی برخی بازی های مشهور ویندوز را کنترل می کند.

7.کاربرد فناوری تشخیص گفتار در کتابخانه
سیستم های تشخیص گفتار آنچنان که در حوزه های دیگر مثل پزشکی و انجمن های حقوقی مورد استفاده قرار گرفتند در کتابخانه ها بکار گرفته نشده اند و کتابخانه ها بیشتر موضعی منفعلانه نسبت به بکارگیری این فناوری از خود نشان داده اند.اما با توجه به ماهیت خدمات کتابخانه ای و همچنین تنوع کاربرانی که تمایل به استفاده ازکتابخانه دارند مطمئناً وجود چنین فناوری کمک فراوانی به کتابداران در تسریع و بهبود خدمات کتابخانه ای می کند.به عنوان مثال در کارهای خدماتی –فعالیت هایی که کتابدار به یک ابزار ارتباطی غیر از چشم ها و دست ها نیاز دارد- مثل رف خوانی و فهرست نویسی پیوسته، ویا در فعالیتهای مربوط به سرویسهای کتابخانه ای مثل بازیابی اطلاعات و کنترل فرایند امانت، و نهایتاً در ایجاد امکان دسترسی به پایگاههای اطلاعاتی از راه دور می تواند کاربرد موثری داشته باشد. همچنین با استفاده از اینگونه سیستم ها می توان به نمایه سازی چند رسانه ای ها (مانند فیلم و ویدئو ) پرداخت که دراین حالت کلمات کلیدی در قالب گفتار وارد می شوند و به صورت گفتارنیز بازیابی می شوند. از سوی دیگر با ورود این فناوری به کتابخانه ها و فعالیتهای آن می توان انتظار داشت که کاربران کتابخانه بطور چشمگیری افزایش یابند،چرا که همیشه کاربرانی هستند که نمی توانند با سیستم معمول کتابخانه کار کنند و از منابع اطلاعاتی آن استفاده کنند.این گروه کاربران می توانند کم سوادان ویا طیف وسیعی از توانجویان باشند که در صورت بکارگیری این فناوری آنها نیز با امکان دسترسی به منابع جزو کاربران همیشگی کتابخانه ها می شوند.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله 21   صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله مروری بر سیستم تشخیص گفتار و کاربرد آن