لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 80
انتقال گرما به وسیله نانو سیالات
چکیده :
اخیراً استفاده از نانوسیالات که در حقیقت سوسپانسیون پایداری از نانو فیبر ها و نانورزات جامد هستند به عنوان راهبردی جدید در عملیات انتقال حرارت مطرح شده است .
تحقیقات اخیر روی نانو سیالات ، افزایش قابل توجهی را در هدایت حرارتی آنها نسبت به سیالات بدون نانوزات دیا همراه با ذرات بزرگتر (ماکرو ذرات) نشان می دهد . از دیگر تفاوت های این نوع سیالات ، تابعیت شدید هدایت حرارتی از دما ، همچنین افزایش فوق العاده فلاکس حرارتی بحرانی در انتقال حرارت جوشش آنهاست .
بیشترین افزایش هدایت حرارتی در سوسپانسیون نانو لوله های کربنی گزارش شده از این رو توجه بسیاری از دانشمندان در سالهای اخیر به استفاده از انواع نالوله ها در سیالات انتقال دهنده حرارت متمرکز شده است .
نتایج آزمایشگاهی بدست آمده از نانوسیالات نتایج قابل بحثی است که به عنوان مثال می توان به انطباق نداشتن افزایش هدایت حرارتی با تئوری های موجود اشاره کرد . این امر نشان دهنده ناتوانی این مدلها در پیش بینی صحیح خواهی نانوسیال است . بنابر این برای کاربردی کردن این نوع از سیالات در آینده و در سیستم های جدید ، باید اقدام به طراحی ، ایجاد مدلها و تئوری هایی شامل اثر نسبت حجم به سطح و فاکتورهای سیاست نانوذره و تصحیحات مربوط به آن کرد .
این تحقیق شامل بررسی خواص استثنایی نانوسیالات شامل هدایت حرارتی بیشتر نسبت به سوسپانسیون های معمولی ، رابطه غیر خطی بین هدایت و غلظت مواد جامد و بستگی شدید هدایت به ما و افزایش شدید فلاکس حرارتی در منطقه جوشش می باشد .
این خواص استثنایی ما را به تولید نانوسیال در مقیاس بزرگ و به شکل پایدار و هموژن سوق می دهد روش ساخت نسبتاً ساده و ویسکوزیته قابل قبول نیز باعث شده تا این سیالات به عنوان یکی از مناسب ترین و قوی ترین انتخاب ها در زمینه سیالات خنک کننده مطرح شوند .
بنابر این ما درصد معرفی مدلهائی کاربردی برای پیش بینی خواص حرارتی نانوسیالات با توجه به فاکتورهای شکل و اندازه ، نسبت سطح به حجم و پارامتر های سیالیت نانوذرات ، برآدیم .
متاسفانه به علت عدم انطباق افزایش هدایت حرارتی باتئوری های موجود به علت ناتوانی این مدلهای در پیش بینی خواص نانوسیو به منظور کاربردی کردن این نوع از سیالات در آینده باید اقدام به طراحی و ایجاد مدل و تئوری هایی مناسب تر و واقعیت گراتر بپردازیم .
در نهایت با توجه به نتایج تئوریکال و آزمایشگاهی خصوصیات انتقال حرارتی را برای فلزاتی نظیر Au,Ag,Cu و اکسیدهای فلزی مثل Cuo و شبه کامپوزیت های پلیمری از نانولر های کربنی پر شده در سیالات پیله متداول نظیر آب دی یونیزه ، اتیلن گلیکول و تولومن و ... را مورد اندازه گیری و مقایسه قرار داریم بیشترین افزایش هدایت در سوسپانسیون نانو لوله های کربنی با مقدار 250% افزایش در سیال پایه روغن گزارش شده است که بسیار قابل توجه است .
با توجه به مطالب مطرح شده در این تحقیق آینده ای بسیار درخشان در مدیریت دمائی صنعت قابل انتظار است .
مقدمه
سیستم های خنک کننده ، یکی از مهم ترین دغدغه های کارخانه ها و صنایعی مانند میکروالکترونیک و هر جایی است که به نوعی با انتقال گرما رو به رو باشد با پیشرفت فناوری در صنایعی مانند میکرو الکترونیک که در مقیاس های زیر صد نانومتر عملیات های سریع و حجیم با سرعت های بسیال بالا (چند گیگاهرتز) اتفاق می افتد و استفاده از موتوهایی با توان و بار حرارتی بالا اهمیت بسزائی پیدا می کند ، استفاده از سیستم های خنک کننده پیشرفته و بهینه ، کاری اجتناب ناپذیر است . بهینه سازی سیستم های انتقال حرارت موجود ، در اکثر مواقع به وسیله افزایش سطح آنها صورت می گیرد که همواره باعث افزایش حجم واندازه این دستگاهها می شود ، لذا برای غلبه بر این مشکل به خنک کننده های جدید و موثر نیاز است و نانو سیالات[1]به عنوان راهکاری جدید در این زمینه مطرح شده اند .
نانوسیالات متشکل از سوسپانسیونی[2]از نانو ذرات جامد یا فیبر ها با اندازه کمتر از nm 100 در یک مایع پایه می باشد در واقع بخش خوب ذرات جامد در یک مایع عموماً به نام سوسپانیسون کلوئیدال شناخته می شوند . سیستم های کلوئیدال بسیار کاربرد دارند آنها در طبیعت در سلولهای زنده دیده می شود همچنین در بسیاری از واکنش های شیمیایی حضور دارند در بسیاری از سیستم ها واسطه پایه آب بوده و ذرات به صورت ماکرو مولکولها یا توده ای از مولکولها می باشند کلوئیدها به خاطر خصوصیات رئولوژیکالشان بسیار مورد توجه می باشد آنها رفتار برشی[3] جالبی از خود بروز می دهند بسته به سرعت برش ، ضخامت و نازکی برشی می تواند مشاهده شود نازکی به یک کاهش در سیکوزیته موثر بر می گردد و ضخامت ناشی از افزایش در وسیکوزیته موثر می باشد .
مطالعه انتقال حرارت در جامدات بخش شده در مایعات در سالهای اخیر صورت گرفته ایوجا[4] نشان داد که سوسپانسیون های پلی استایرن در ابعاد زیر میکرونی در محلول گلیسرین انتقال حرارت را افزایش می دهد یک مانع اصلی در استفاده از چنین ذرات میکرونی افزایش خوردگی و سایش در سیسم های مهندسی می باشد . با پیدایش نانوتکنولوژی . استفاده از نانو ذرات باعث ایجاد یک سیستم کلوئیدال پایدار گردید که بعدها به نام نانو سیالات شناخته شد . بر خلاف سوسپانیسون های میکرو ابعاد بخش نانویی می تواند سیستمی با استخکام بالا تشکیل دهد از این خاصیت در سیستم هایی که یک سیال برای انتقال انرژی مطرح است ، استفاده می شود . اولین افزایش انتقال حرارت با نانوذرات به وسیله ماسودا[5]در ژاپن گزارش شد . گروه تحقیقاتی او اعلام کردند که هدایت دمائی [6]سوسپانیسون فوق ریز از آلومینه سلیکا و اکسیدهای معدنی دیگر در آب به یک مقدار قابل توجه حداکثر %30 برای یک کسر جمعی %4.3 خواهد رسید در همان شرایط فاکتور اصطکاک تقریباً چهار برابر خواهد شد . در ایالات متحده چوی[7]آزمایشگاه تحقیقاتی آرگون[8] یک کلاس جدید از مهندسی سیالات با تحت عنوان فوق انتقال دهنده های حرارتی را در سال 1995 را ایجاد کرد و واژه نانوسیال نیز برای اولین بار توسط چوی به کار برده شد . ونگ[9]نیز آزمایشاتی در زمینه هدایت حرارتی برای آلومینا و اکسیرس با استفاده از سیال پایه آب واتیلن گلیکول انجام داد . او مشاهده کرد که افزایش هدایت دمائی با کاهش سایز ذره بیشتر خواهد شد . این افزایش متناسب با کسر جمعی ذره ، در سیال پایه می شد . او برای ذرات آلومینا حداکثر افزایش %12 در یک کسر جمعی %3 و افزایش وسیکوزیته %30-20 را مشاهده کرد او پی برد که وسیکوزیته یک بستگی درجه دوم به کسر جمعی %3 و افزایش وسیکوزیته %30-20 را مشاهده کرد او پی برد که وسیکوزیته یک بستگی درجه دوم به کسر جمعی ذرات دارد در حالی که این بستگی برای هدایت دمائی به صورت خطی می باشد . در یک مطالعه مشابه پاک[10]یک افزایش سه برابر در ویسکوزیته برای آلومنیا در همان کسر حجمی اعلام کرد .با توجه به این مطالب واضح است که هموژناسیول سازی نانوسیالات باید با توجه به پارامترهای اندازه ، کسر جمعی ، شکل ذرات و دما .... بهینه سازی گردد قبل از اینکه به عنوان یک انتخاب برای افزایش انتقال حرارت عنوان شوند . ایست من [11]در سال 2001 نشان داد که ذرات مس nm10 در اتیلن گلیکول می توانند هدایت را تا %60 حتی در صورت اضافه شدن به مقدار بسیار کم (کمتر از %3 .0) برسانند با اکسید مس افزایش به مقدار %20 برای کسر جمعی %4 خواهد رسید . این نتایج به طور واضح اثر سایز ذره را روی افزایش هدایت نشان می دهد . البته ما باید به اثر سایز کوانتومی در چنین ابعادی توجه کنیم . در باره چنین اثراتی بسیار بحث شده است مثلاً پاتل[12]نشان داد که با همان نسبت سطح به حجم می توانیم به شرایط هدایت دمائی مختلفی در صورت استفاده از مواد مختلف برسیم . این موضوع اشاره می کند به این مطلب کوانتومی پدیده انتقال بی اهمیت نمی باشد . داس[13]هدایت دمائی ذرات آلومنیا و اکسید مس در آب را برای رنج های دمائی مختلف از 50C-20 و شرایط باردهی مختلف بررسی کرد آنها یک افزایش خطی بین هدایت حرارتی و دما مشاهده کردند اما برای همان کسر حجمی آهنگ افزایش برای اکسید مس بیشتر از آلومینا بود برای نانوذرات طلا در تولوئن هم آزمایشات تکرار شد و مشخص شد در کسرهای جمعی بزرگتر افزایش هدایت های حرارتی استفاده از نانو لوله های کربنی یک ایده ال جدید در مبحث نانو سیالات می باشد . این نکته حائز اهمیت است که کربن ویژگی آب گریزی دارد و نمی تواند در آب بدون حضور سورخک تنت ها بخش شود . چوی افزایش قابل توجه در هدایت حرارت برای نانولوله های کربنی چند دیواره (MWNT) در سوسپانیسون روغنی را گزارش داد . نتایج نشان می داد که بر خلاف نانو پودر ها هدایت دمائی یک تغییرات درجه دو با کسر حجمی دارد . برای %1 جمعی نانو لوله ها یک افزایش %250 در هدایت دمائی روغن نشان دادند که بسیار قابل بیشتر بوده و خیلی بیشتر از مشاهدات ما از ذرات نانوئی اکسید می باشد .
با توجه به مطالب فوق می توان گفت نانو سیالات به علت افزایش خواص حرارتی توجه بسیاری از دانشمندان را در سالهای اخیر به خود جلب کرده اند به عنوان مثال مقدار کمی (حدود یک درصد جمعی) از نانو ذرات مس یا نانو لوله های کربنی در اتیلن گلیکول یا روغن به ترتیب افزایش 40 و 250% در هدایت حرارتی این سیالات ایجاد می کنند . در حالی که برای رسیدن به چنین افزایشی در سوسپانسیونهای معمولی به غلظت های بالاتر از ده درصد از ذرات احتیاج داریم این در حالی است که مشکلات دئولوژیکی و پایداری این سوسپانسیونهای معمولی به غلظت های بالاتر از ده درصد از ذرات احتیاج داریم این در حالی است که مشکلات دئولوژیکی و پایداری این سوسپانسیون های در غلظت های بالا مانع از استفاده گسترده از آنها در انتقال حرارت می شود . در برخی از تحقیقات هدایت حرارتی نانو سیاست چندین برابر بیشتر از پیش بینی تئوری هاست و از نکات جالب دیگر تابعیت شدید هدایت حرارتی نانوسیالات از دما و افزایش تقریباً سه برابر فلاکس حرارتی بحرانی آنها در مقایسه با سیالات معمولی است . این تغییرات در خواص حرارتی نانوسیالات فقط مورد توجه محققان نمی باشد بلکه در صورت موفقیت آمیز و تأیید پایداری ، آنها می توانند آینده ای امیدوار کننده در مدیریت حرارتی صنعت را رقم بزنند البته از سوسپانسیون نانوذرات فلزی در دیگر زمینه ها از جمله صنایع داروئی و درمان سرطان نیز استفاده شده و تحقیق در زمینه نانو ذرات دارای آینده بسیار گسترده ای می باشد .
برای اینکه از لحاظ کمیتی نیز اسمیت استفاده از نانو ذرات در بهبود خواص حرارتی سیالات مشخص شود در شکل 1 ظریب هدایت حرارتی برای سیالات رایج در سیستم های مهندسی و در جدول 1 مقادیر ظرایب انتقال حرارتی برای بعضی مواد بالک نشان داده شده است . (1) و (2) و(3)
شکل 1: محدوده ظرایب هدایت حرارتی برای محلولهای مهندسی رایج
جدول 1: ظرایب هدایت حرارتی چندین نوع مایع و جامد
تهیه نانوسیالات :
بهبود خواص حرارتی نانوسیال احتیاج به انتخاب روش تهیه مناسب این سوسپا نسیون ها دارد تا از ته نشینی و ناپایداری آنها جلوگیری شود متناسب با کاربرد انواع بسیاری از نانو سیالات از جمله نانو سیال اکسید فلزات ، نیتریت ها ، کاربید فلزات و غیر فلزات که به وسیله و یا بدون استفاده از سورفکتت ها در سیالاتی مانند آب ، اتیلن گلیکول و روغن به وجود آمده است ، مطالعات زیادی روی چگونگی تهیه نانوذرات و روش های پراکنده سازی آنها در سیال پایه انجام شده است که در اینجا به طور مختصر چند روش متداول را که برای تهیه نانو سیالات وجود دارد ذکر می کنیم .
روش دو مرحله ای : در این روش ابتدا نانو ذره یا نانو لوله معمولاً به وسیله روش رسوب بخار شیمیایی (CVD) در معنای گاز پی اثر به صورت پودرهای خشک تهیه می باشد (شکل 2: وسط) در مرحله بعد نانوذره یا نا نو لوله در داخل سیال پراکنده می شود برای این کار از روشهایی مانند لرزاننده های ما فوق صوت و یا از سورفکتنت ها استفاده می شود تا فکوخدای شدن نانوذرات به حداقل رسیده و باعث بهبود رفتار پراکندگی شود روش دو مرحله ای برای بعضی مواد مانند اکسید فلزات در آب دیونیزه شده بسیار مناسب است و برای نانو سیالات شامل نونوذرات فلزی سنگین کمتر موفق بوده است .
این روش دارای مزایای اقتصادی بالقوه ای است زیرا شرکت های زیادی توانائی تهیه نانو پودرها در مقیاس صنعتی را دارند .
2- روش تک مرحله ای : روش تک مرحله ای نیز به موازات روش دومرحله ای پیشرفت کرده است به طور مثال نانوسیالاتی شامل نانو ذرات فلزی با استفاده از روش تبخیر مستقیم تهیه شده اند در این روش منبع فلزی تحت شرایط حنأ تبخیر می شود (شکل 2: چپ) در این روش تراکم توده نانوذرات به حداقل خود می رسد اما فشار بخار پایین سیال یکی از معایب این فرایند محسوب می شود ولی با این حال روشهای شیمیایی تک مرحله ای مختلفی برای تهیه نانوسیال به وجود آمده است که از آن جمله می توان به روش احیای نمک فلزات و تهیه سوسپانسیون ها آن در حلالهای مختلف برای تهیه نانوسیالات فلزی اشاره کرد (شکل 2: راست) مزیت اصلی این روش تک مرحله ای کنترل بسیار مناسب روی اندازه و توزیع اندازه ذرات است .(2) و (3) و (4)
شکل 2: تصاویر TEM از نانوسیال مس (چپ) نانوذرات اکسیدس (وسط) و ذرات کلوئیدی طلا – سرب (راست) که در مطالعات مقاومت فصل مشترک استفاده شده اند . ذرات اکسید مس حالت خوشه ای دارند و کلوئیدهای طلا سرب توزیع مناسب و اندازه یکسان دارند .
جدول 2 لیست کتاب آزمایشگاهی مربوط به روش تولید برای نانو سیالات مختلف
سیستم نشان داده شده در شکل 3 شامل یک روش تبخیر تک مرحله ای برای آماده سازی نانو ذرات فلزی در مایع پایه در شرایط خئا می باشد . وقتی نمونه های وقتی در هیتر گرم می شوند آنها می توانند به همدیگر در محفظه خئا فشار وارد کرده و به صورت ذرات نانو ابعاد یا خوشه ای شکل در بیابند سپس نانو ذرات به سطح مایه زمینه جاری نزدیک شده و با آن مایع پوشانده می شوند . و این مایع از اتصال نانوذرات با یکدیگر ممانعت به عمل می آورد . سیستم در شرایط خئا 2.SXL.storr قرار دارد .
شکل 2: نمایی از سیستم VERL
در این آزمایش نانو ذرات Ag .Cu به ترتیب در روغن سلیکون و پارافین مایع پراکنده شده اند شکل 3 تصاویر TEM این نانو سیالدت را نشان می دهد . ذرات فلزی یک توزیع خوب در مایع زمینه دارند و کلوخه ای شکل به سختی پیدا می کند .
شکل 3 : تصاویر TEM a: ذرات نقش پیش آماده سازی شده و b: ذرات س بیش آماده سازی شده .
مدلسازی نانو سیالات :
تلاش زیادی برای توصیف رفتار غیر عادی مشاهده شده در نانوسیالات با استفاده از تئوری کلاسیکال ماکسول برای مواد کامپوزیت صورت گرفته است . این تئوری برای سیستم های هموژن با وارد کامپوزیت ایزد تروپیک با ذرات کروی توزیع شده به صورت تصادفی که اندازه یکنواختی دارند و همچنین برای سوسپانیسون های رقیق به کار می رود .
مدلهای موجود به دو گروه طبقه بندی می شود :
1- مدلهای استاتیک : در این مدلها فاند ذرات ساکن در سیال پایه به عنوان یک کامپوزیت فرض می شوند که خصوصیات انتقال حرارتی آنها بوسیله مدلهای بر پایه هدایت نظیر ماکسول و هامیلتون – کرد سر بیان می شود .
2- مدلهای دنیامیک : این مدلها برای مبنای حرکات تصادفی خباجی در نانوذرات می باشد که این حرکت مسئول انتقال انرژی به طور مستقیم یا غیر مستقیم در نانو سیالات می باشد . انتقال انرژی مستقیم به صورت برخوردها بین نانوذرات و انتقال انرژی غیر مستقیم به صورت جابجایی نظیر : هدایت هدایتی ، هدایت الکتریکال ، ثابت دی الکترونیک و نفوذ مغناطیسی به کار می رود فرمولاسیون ماکسول برای ذرات در غلظت های پایین و نیز ذرات در رژیم های میکو متری نتایج قابل قبولی می دهد . هامیلتون و کروسر (H2C) مدل تئوری ماکسول را برای نانوذرات کروی اصلاح کردند این مدل پایه بسیاری از مدلهائی که برای نانوسیالات بکار می روند می باشد .
تئوری ماکسول :
تئوری ها میلتون و کروسر
: نسبت هدایت حرارتی ذره به سیال ، سکر حجمی با غلظت ذرات بخش شده . n: فاکتور شکل مربوط به به اختلاف در شکل ذرات است . برای ذرات کروی n=3 می باشد و در این ذرات واضح است که معادلات H&C برابر با معادلات ماکسول می باشد . مقایسات اخیر برای نانو اکسیدها نشان داد که تئوری H&C رفتار درستی را پیش بینی می کنند اما افزایش مشاده شده خیلی بیشتر از مقدار پیش بینی شده بوسیله تئوری می باشد . وقتی تئوری برای نانو ذرات بسیار خالص فلزی مثلاً Cu , Au قسمت شده هدایت دمائی موثر بدست آمده از تئوری H&C تقریباً یک درجه از بزرگی را داشتند . به علاوه رفتار در کسرهای جمعی کوچک غیر خطی بود .
واضح است که افزایش هدایت حرارتی فقط تابعیت کسر جمعی و نسبت هدایت ها ندارد بلکه به اندازه ذرات نیز وابسته است . اما تئوری H&C هیچ وابستگی به اندازه ذرات برای پیش بینی دقیق ندارد .
کبلینسکی چهار مکانیزم ممکن را برای رفتار هدایتی غیر عادی مشاهده شده در نانو سیالات به کار برد . اول اینکه اول تئوری ماکسول و اصلاحات مربوط را نپذیرفت چرا که این روابط بستگی واضحی به اندازه ذره ندارد . او یک مشاهده کلیدی را در نظر گرفت که انتقال حرارت قدیا وابسته به حرکات براونی[14]ذرات می باشد . هر چند محاسبات بیانگر اثرات کوچک حرکات براونی هستند . این نتیجه ممکن است اثبات نشود زیرا مقالات اخیر افزایش هدایت حرارتی در دماهای بالاتر را به حرکت براونی مربوط کرده اند .
لایه های مایع اطراف ذرات مکانیزم دیگری بود که توسط کبلینسکی[15]مطرح شد . ایده پایه این است که مولکولهای مایع می توانند یک لایه اطراف ذرات جامد تشکیل داده و محدوده هندسی ذره را افزایش می دهد . از آنجا که انتقال فونون در جامدات کریستای خیلی موثر است . بنابراین در این سیستم افزایش انتقال حرارت را خواهیم داشت .
مکانیزم سوم مربوط به طبیعت انتقال در نانو ذرات می باشد . مقالات زیادی به این نکته اشاره می کند که مکانیزم انتقال و نفوذ مصالح در محدوده نانو ذرات معتبر نیست و انتقال حرارت در نانو ذرات بالستیک است . چون در انتقال با کستیک یا در انتقال فونونهای انتشار یافته ذرات جامد ضرورتاً در یک دمای ثابت می مانند ، شکل مرزی ثابتی برای انتقال حرارت در مرزها ایجاد می شود به علاوه اگر فونون های بالستیک وارد یک ذره شود می توانند ارتعاش را به ذرات جامد دیگر انتقال داده و انتقال حرارت را به طرز برجسته ای افزایش دهند . مسیر آزاد متوسط فونونی در مایعات خیلی کوچک است . زیرا بزرگی هندسی محدود به قطر اتم های کوچک می شود . از آنجا که ذرات به طور پیوسته با حرکت براونی جابجا می شود امکان این وجود دارد که بعضی اوقات انتقال فونونی پیوسته حتی در غلظت های کم ذرات صورت گیرد . شاید مکانیزم های فوق در تجسم انتقال حرارت در نانو سیالات درست باشند . ما بعداً نشان خواهیم داد که شبیه سازی دینامیکی مولکولی با پذیرش پتانسیل بین اتمی می تواند انتقال فونونی پیچیده در بالک و فصل مشترک نانو ذرات را توصیف کند .
اولین شبیه سازی میکروسکوپیک با ابعاد بزرگ به وسیله باهاتا چاریا[16]انجام شد او فرض کرد که ذرات نانو خیلی بزرگتر از ذرات سیال پایه یا حلال هستند بنابراین ذرات حلال حذف شده و اثرشان بوسیله یک ترکیب از نیروهای اصطکاکی و راندمی نشان داده می شود . سپس به ذرات محلول اجازه داده می شود تا مطابق با قانون حرکت دوم نیوتن جابجا شود یفروهای روی ذرات محلول با فرض یک پتانسیل تجربی در بعدی به صورت زیر داده می شوند .
این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
دانلود تحقیق کامل درمورد انتقال گرما به وسیله نانوسیالات