فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق راکتورهای هسته ای

اختصاصی از فی گوو دانلود تحقیق راکتورهای هسته ای دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق راکتورهای هسته ای


دانلود تحقیق راکتورهای هسته ای

مقدمه

در  نیروگاهها ی برق ابتداآب را گرم می کنند تا به بخار تبدیل گردد وازفشار بخار آببرای بکار انداختن توربین های ژنراتورهای مولد برق استفاده میشود .

گرمای لازم  در نیروگاههای فسیلی با سوزاندن زغال سنگ یا نفت  بدست می آید ولی در نیروگاههای اتمی این گرما با ایجاد پدیده شکافت در هسته اورانیم بدست می آید. و از آنجاییکه انرژی حاصل از یک کیلوگرم اورانیم معادل انرژی یک میلیون لیتر نفت یا ده هزار تن زغال سنگ است . استفاده از انرژی اتمی بسیار جذابتر به نظر می رسد.

 

راکتورهای هسته ای

 

امروزه دو نوع راکتور متداولند راکتورهای  با فشار آب و  راکتورهای آب جوشان

اجزای ساختمان یک راکتور با فشارآب pwr عبارتند از:

۱- راکتورreactor:د ستگاهی که در آن شکافت هسته ای رخ می دهد

۲-ماده سوخت اورانیم غنی شده ۲ تا ۳٪ nuclear fuel:

از انجاییکه اورانیم طبیعی شامل ۳/۹۹٪ اورانیم ۲۳۸ و ۷/. ٪ اورانیم ۲۳۵ است اورانیم طبیعی را باید غنی سازی نمودیعنی  ۲ تا ۳٪ایزوتوپ اورانیم۲۳۵در آن بایدوجود داشته باشد. ماده سوخت مورد استفاده در راکتور ممکن است شامل صدها میله سوخت  باشد که درون این میله ها اورانیم غنی شده بصورت قرص هایی قراردارند وامادهاند مه با برخورد نوترونهای کند پدیده زنجیره ای شکافت را انجام دهند.

۳- منبع آب: 

اورانیم غنی شده مطابق شکل زیر بصورت میله های سوخت در یک منبع آب قرار داده می شود. . ازانجاییکه هر چقدر نوترونهای شکافنده کند با شند احتمال شکافت هم زیادتر خواهد بود   آب نه تنها کار انتقال گرمای حاصل از شکافت را برعهده دارد بلکه نقش کند  ساز نوترونهای تولید شده را هم انجام می دهد و انرژی انها را کاهش می دهد

۳- میله های تنظیم  control rod:

میله هایی هستند از جنس کادمیم یا بر که برای کنترل زنجیره شکافت استفاده می شود که  بطور خودکار وارد راکتور می شوند  و مقدار زیادی از نوترونها را جذب میکتتد و ضریب تکثیر نوترونها تا یک تنزل می دهند یعنی تنها یک نوترون حاصل از شکافت در شکافت بعدی شرکت کند.هر گاه بخواهیم سرعت شکافت را بیشتر کنیم کافی است میله را از راکتور خارج سازیم  

 انواع رآکتورهای هسته ای:

دید کلی:

رآکتور ها در اصل سیستم هایی هستند که واکنش های هسته ای مثل شکافت هسته‌ای در آنها صورت می گیرد. و انرژی تولیده در آنها تحت کنترل در می آید. به عنوان مثال خورشید یک رآکتور آن عناصر سبک هسته ای به هم جوش می خورند (همجوشی هسته ای) و تولید انرژی می کنند.

انواع رآکتورها را از لحاظ عملکردشان در زیر می آوریم.

 

رآکتورهای حرارتی کند: 

رآکتورهای حرارتی خودش به دو دسته تقسیم می شوند: 

رآکتور حرارتی با کند کننده و خنک کننده آب 

رآکتور حرارتی با خنک کننده گازی AGR در رآکتورهای حرارتی از نوترون کند شده که نوترون حرارتی نامیده می شود، برای شکافت هسته‌ای استفاده می شود اما در رآکتورهای تند از نوترون سریع استفاده   می شود. در شکافت اورانیوم 235 نوترون کند یا حرارتی در اثر واکنش 2 الی 3 تا نوترون سریع ایجاد می شود. حتماً این نوترون های سریع باید کند شوند. بنابراین دررآکتورهای حرارتی از کند کننده و خنک کننده استفاده می شود در حالی که در رآکتورهای سریع ماده کند کننده لازم نیست امّا ماده خنک کننده لازم است. در رآکتورهای PWR و BWR کند کننده و خنک کننده آب می باشد یک تیپ از رآکتورهای کانادایی وجود دارد که در آن از آب سنگین یا دوتریوم استفاده می شود در عوض از اورانیوم غنی شده 1% استفاده می شود. در رآکتور AGR کند کننده زغال و خنک کننده گاز می باشد. در این رآکتور نوترون ها با یک برخورد کند نمی شوند بلکه ممکن است بارها برخورد کنند تا کند شوند. برای تولید 1000 مگا وات انرژی روزانه حدود 1 کیلوگرم اورانیوم235 مصرف می شود.

 رآکتورهای سریع(تند): 

رآکتورهای سریع به دو دسته تقسیم می شوند

 

  رآکتورهای LMFR: 

دررآکتورهای LMFR ماده کند کننده لازم نیست ولی خنک کننده فلز مذاب سدیم است. در این راکتور پلوتنیوم 239 به عنوان سوخت استفاده می شود و خیلی پیشرفته است. 

  رآکتورهای BFR: 

 

 

 

 

 

 

 

فایل ورد 46 ص


دانلود با لینک مستقیم


دانلود تحقیق راکتورهای هسته ای

دانلود تحقیق تاریخچه تکامل چرخه سوخت هسته ای

اختصاصی از فی گوو دانلود تحقیق تاریخچه تکامل چرخه سوخت هسته ای دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق تاریخچه تکامل چرخه سوخت هسته ای


دانلود تحقیق تاریخچه تکامل چرخه سوخت هسته ای

سابقه تاریخی:
 پس از جنگ جهانی دوم، متفقین هر گونه فعالیت در زمینه توسعه صنعتی یا تحقیقاتی هسته ای را در هر دو بخش آلمان ( شرقی و غربی) ممنوع کردند. پس از آنکه آلمان غربی رسما اعلام کرد که هیچ گونه سلاح هسته ای تولید نمی کند و در اختیار هم ندارد، در سال 1955 به عنوان یک کشور مستقل اجازه تحقیق و توسعه در زمینه انرژی هسته ای و استفاده صلح آمیز از آن را کسب کرد. تا آن زمان، برخی کشورها تحقیقات و کار روی فناوری هسته ای را آغاز کرده بودند و برخی حدود 10 سال در این زمینه سابقه داشتند. برای پر کردن این فاصله آلمان ها دست به کار شدند و بخش های سیاسی، اقتصادی و علمی مختلف در این کشور برای جلب همکاری همه جانبه بین المللی به صورت همسو وارد عمل شدند. بر همین اساس "برنامه هسته ای آلمان" تدوین شد. این برنامه شامل ساخت چند راکتور اولیه، فراهم کردن چرخه کامل سوخت و دورریزی زباله های رادیو اکتیو می شد. در سال 1955 دولت فدرال آلمان، وزارت انرژی این کشور را تاسیس کرد. به این ترتیب آلمان به یکی از اعضای تشکیل دهنده "جامعه انرژی اتمی اروپا" (EUROTOM ) و همچنین "آژانس انرژی هسته ای" (NEA) تبدیل شد. توافق نامه هایی برای همکاری با فرانسه، انگلیس و آمریکا به امضا رسید. با مشارکت تولید کنندگان آمریکایی، آلمان ها شروع به ساخت نیروگاه های هسته ای تجاری کردند. (شرکت های زیمنس و وسیتنگهاوس برای ساخت PWR راکتورهای آبی و شرکت های AEG و جنرال الکتریک برای ساخت راکتورهای آبی نوع BWR آمادگی خود را اعلام کردند.) تسهیلات و امکانات کارخانه های الکتریکی آلمان موجب تسریع کار شد. در عرض چند سال، چندین مرکز تحقیقات هسته ای در آلمان غربی به وجود آمد: KFK و GKSS و KFA در سال 1956. HMI و DESY در سال 1959 و GSI در سال 1969. بیشتر این مراکز تحقیقاتی همانند موسسات دانشگاهی مجهز به راکتورهای تحقیقاتی بودند. امروزه بیشتر راکتورهای تحقیقاتی تعطیل شده اند. از اواخر دهه 1980 برخی از این مراکز تحقیقاتی حوزه فعالیتشان را ( با تغییر نام) به تحقیق درباره موضوعات محیط زیستی تغییر دادند. به دلیل شرایط اقتصادی، تحقیقات هسته ای، بیشتر و بیشتر به فیزیک هسته ای بنیادین محدود شد. در سال 1958 یک نیروگاه هسته ای آزمایشی 16 مگاواتی ( به نام VAK ) به شرکت های GE /AEG سفارش داده شد که در سال 1960 به بهره برداری رسید. ساخت و ساز مستقل هسته ای آلمان از سال 1961 و با سفارش یک راکتور دمای بالا ( به نام AVR) به شرکت های BBK/BBC آغاز شد. سفارش ساخت راکتورهای تولید انرژی با توان بین 250 تا 350 مگاوات و 600 تا 700 مگاوات بین سال‌ های 1965 تا 1970 به شرکت های مختلف داده شد. پس از حدود 15 سال آلمان توانست فاصله خود را با فناوری روز دنیا در زمینه تکنولوژی هسته ای از میان بردارد. در این دوران صنایع هسته ای آلمان اولین سفارش های خارجی خود را از هلند (برای ساخت نیروگاه بورسل) و آرژانتین ( نیروگاه آتوچا) دریافت کرد. در سال 1972 ساخت راکتور ببیلیس - که بعدها به بزرگترین راکتور جهان تبدیل شد – با توان 1200 مگاوات در آلمان آغاز شد. بین سال های 1970 تا 1975 سالانه به طور متوسط سفارش ساخت 3 واحد نیروگاه هسته ای داده می شد. در سال 1960 شرکت های زیمنس و AEG با ادغام فعالیت های آتی در برنامه های هسته ای شان KWU (Kraftwerk Union) را بنیان نهادند. ساخت نیروگاه های هسته ای KWU با راکتورهای آبی PWR توسط متخصصین داخلی آغاز شد. با پشتوانه سال‌ ها تجربه عملیاتی، در نهایت یک راکتور آبی 1300 مگاواتی استاندارد شده (Konvoi) برای ساخت معرفی شد. هر چند که تنها ساخت 3 واحد Konvoi ( یعنی Isar-2, Neckarwestheim-2 , Emsland ) در عمل محقق شد. واحدهای Konvi که در سال 1982 سفارش داده شد و در سال های 88 و 89 به بهره برداری رسید، جزو آخرین پروژه های نیروگاه هسته ای در آلمان محسوب می شوند. تا آن زمان این نیروگاه ها چیزی حدود یک سوم از برق مصرفی کشور آلمان را تامین می کردند. در آلمان شرقی ساخت نیروگاه های هسته ای از سال 1955 و با کمک اتحاد جماهیر شوروی سابق آغاز شد. پس از راه اندازی "موسسه مرکزی فیزیک هسته ای" در سال 1956 و در شهر روسندورف تحقیقات در زمینه فیزیک هسته ای رسما آغاز شد. در همان مکان و در سال 1957 یک راکتور تحقیقاتی با کمک های شوروی شروع به کار کرد. اولین نیروگاه هسته ای آلمان شرقی با توان 70 مگاوات با نام رایسنبرگ (Rheinsberg ) مجهز به یک راکتور آبی PWR روسی در سال 1966 وارد شبکه برق این کشور شد. بین سال های 1974 تا 1979 واحدهای 1 تا 4 نیروگاه هسته ای گریفسوالد ( Greifswald ) ، آنها هم مجهز به راکتورهای روسی، به شبکه پیوستند. پس از اتحاد دو آلمان تجهیزات امنیتی پیشرفته متعلق به نیروگاه های هسته ای روسی از آلمان شرقی خارج شدند. بنابر گزارش ها هم اکنون تجهیزات هسته ای آلمان شرقی در مقایسه با همسایه غربی از امنیت پائین تری برخوردار است. به دلیل مسائل امنیتی و اقتصادی – به خصوص کاهش میزان مصرف – مسئولان تصمیم گرفتند این نیروگاه ها را ارتقای سطح ندهند و پس از مدتی این تجهیزات به تدریج تعطیل شدند. کار بر روی واحدهای در دست ساخت 6 و 7 و 8 گریفسوالد نیز متوقف شد. دو ماکت طرح اولیه راکتور پیشرفته در آلمان ساخت شد. یکی راکتور دمای بالا به نام THTR300 توسط HRB/BBC و دیگری یک راکتور به نام SNR300 توسط Interatom/siemens . اولی پس از راه اندازی و شروع به کار موفق و چند سال بهره برداری به دلایل اقتصادی و سیاسی تعطیل شد و دومی نیز هر چند کار ساختش به اتمام رسید، اما هرگز به بهره برداری نرسید. تمام نیروگاه های هسته ای آلمان که در حال حاضر فعال هستند، توسط KWU یا Siemens/AEG ساخته شده اند. دومین تامین کننده نیروگاه های هسته ای آلمان، شرکت BBR ( حاصل ادغام شرکت های Babcock& Wilcox, Boveri& Cie, Brown ) بود که در سال 1999 فروخته شد. به مدت چند سال شرکت های آلمانی به همراه Siemens/KWU و همکاری نزدیک شرکای فرانسوی اش (Edf و Framatoune ) در تدارک ساخت یک راکتور آبی PWR پیشرفته با نام EPR ( مخفف راکتور آب فشرده اروپایی) بودند. طراحی این راکتور بسیار مدرن بود و در ساخت آن تجهیزات پیشرفته ایمنی در نظر گرفته شده بود. در طراحی EPR تمهیداتی نیز برای کنترل حوادث منتج از ذوب هسته اندیشیده شده بود. دولت آلمان علاوه بر این از ساخت یک BWR ( راکتور آب جوش ) پیشرفته با نام SWR1000 که توسط Siemens/KWU در حال ساخت بود و دارای تجهیزات اضافی ایمنی بود، حمایت و استقبال کرد. از اوایل سال های دهه 1970 میلادی برنامه کاملا موفق هسته ای آلمان با مخالفت های رو به افزایش داخلی مواجه شد. از یک سو اعتراضات و تظاهرات خشونت آمیز و تصرف سایت ها توسط معترضین – به خصوص در بروکدورف، ویل و واکرسدورف – صورت گرفت و از سوی دیگر "شهروندان نگران" دست به شکایات قانونی علیه توسعه نیروگاه های هسته ای زدند. نتیجه این شد که ساخت و دادن مجوز احداث این نیروگاه ها به دلیل موانع قانونی به تاخیر افتاد. امروزه، ساخت نیروگاه های اتمی جدید به منظور تولید برق به لحاظ قانونی در آلمان ممنوع است.
 تاریخچه تکامل چرخه سوخت هسته ای
تمام تجهیزات لازم برای ایجاد چرخه کامل سوخت هسته ای در سال های قبل و در بخش های مختلف آلمان آماده شده بود. در آلمان غربی سابق یک معدن بسیار کوچک استخراج اورانیوم به نام الویلر با قدرت تولید کیک زرد؛ در آلمان شرقی سابق نیز تجهیزات عظیم تولید اورانیوم در ویسموت که در شروع کار بخشی از اورانیوم
مصرفی شوروی سابق را نیز تامین می کرد. الویلر اکنون تعطیل شده و ویسموت که از لحاظ مجموع اورانیوم تولید شده پس از آمریکا و کانادا مقام سوم جهان را داشت- غیرفعال شده است. پروژه ساخت یک نیروگاه بازیافت سوخت در واکرسدورف نیز در سال 1988، به دلیل اعتراضات عمومی و همچنین مشکلات اقتصادی متوقف شد. پس از آن و در حال حاضر آلمان برای بازیافت سوخت مصرف شده با شرکت های COGEMA از فرانسه و BNFL از انگلیس قرارداد دارد. این قرارداد با در نظر گرفتن قوانین شرکت های خصوصی و با موافقت دولتی تنظیم شده است. ضایعات رادیو اکتیو حاصل از پروسه بازیابی سوخت مصرف شده در کشورهای خارجی به آلمان بازگردانده می شود و پلوتونیوم حاصل از بازیافت برای تولید سوخت MOX استفاده می شود. یک نیروگاه ساخت سوخت MOX در هانائو ساخته شد ولی به دلایل عمدتا سیاسی مجوز بهره برداری نگرفت و به همین دلیل اکنون بلااستفاده مانده است. نیروگاه پیلوت بازیافت WAK نیز در حال حاضر غیرفعال است. از اوایل دهه 1960 میلادی آلمان غربی برنامه ای را برای مدیریت و دورریزی ضایعات رادیواکتیو نیروگاه ها آغاز کرد. سیاست دور ریزی زباله های هسته ای بر پایه این تصمیم بنا شده بود که تمام این ضایعات باید در اعماق زمین دفن شود. این سیاست در صورتی موجه است که یک مانع ضد تشعشعات رادیو اکتیو، که قادر به جذب این تشعشعات به صورت بلندمدت و تا زمان از بین رفتن کامل ضایعات باشد، راه آنها را برای رسیدن به سطح زمین سد کرده باشد. عملی کردن این سیاست و فعال شدن در این زمینه در معدن تحقیقاتی آسه در حوزه نمکی نیررساخسن آغاز شد، جایی که ضایعات رادیواکتیو با تشعشع پایین و متوسط به صورت آزمایشی و تا اواخر سال 1978 دور ریخته می شد. در سال 1979، یک موافقت نامه اصولی برای مدیریت ضایعات نیروگاه های هسته ای بین دولت فدرال و دولت محلی (لاندر) به امضا رسید. بر اساس این قرارداد دولت محلی نیدرساخسن متعهد شد حوزه نمکی گورلبن را برای تشخیص قابل استفاده بودن آن برای میزبانی انواع مختلف ضایعات رادیو اکتیو – به خصوص ضایعات با تشعشع خیلی زیاد – مورد ارزیابی و آزمایش قرار دهد. به دنبال سیاست های جدید انرژی در آلمان تحقیقات و کاوش های زیرزمینی در حوزه نمکی گورلبن در اکتبر سال 2000، حداقل به مدت سه سال و حداکثر تا 10 سال، متوقف شده است. محل سابق معدن سنگ آهن شاخت کنراد - آن هم در یندرساخسن- مجوز میزبانی زباله های هسته ای با تشعشع پایین و متوسط را گرفته، اما ساخت تاسیسات مخزن اصلی آن، باز هم به دلایل قانونی هنوز آغاز نشده است.
وضعیت و فعالیت نیروگاه های هسته ای
 در سال 2002 ، 19 نیروگاه هسته ای فعال در آلمان به مجموع ظرفیت تولید 4/22 گیگاوات رسیدند که این میزان هفت درصد بیشتر از سال 1999 بود. این مسأله با افزایش توان راکتور گرمای ( KKP2 و KKU ) و همچنین بهینه سازی توربین بخار (1,KKI2 KKE, KKI ) محقق شد. افزایش توان راکتور گرمایی برای چند نیروگاه دیگر نیز در نظر گرفته شده است. الکتریسیته ناخالص تولید شده در نیروگاه های هسته ای در سال 2002 حدود 165 ساعت بود که 4/0درصد کمتر از سال قبل و حدود یک سوم کل برق تولید شده در کشور بود. این نسبت از سال 1985 تقریبا ثابت مانده است . اما طی دو دهه آینده این میزان به دلایل سیاسی که منجربه از رده خارج کردن نیروگاه های هسته ای می شود، کاهش خواهد یافت.
 تامین کنندگان نیروگاه های هسته ای
 از آغاز قرن بیست و یکم میلادی هیچ یک از نیروگاه های هسته ای آلمان تامین کننده داخلی ندارد. تنها تولید کننده داخلی یعنی Siemens/ KWU بخش هسته ای خود را با فراماتوم ANP ادغام کرد.

 

 

شامل 40 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق تاریخچه تکامل چرخه سوخت هسته ای

دانلود تحقیق بمب هاى هسته اى

اختصاصی از فی گوو دانلود تحقیق بمب هاى هسته اى دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق بمب هاى هسته اى


دانلود تحقیق بمب هاى هسته اى

چرا اورانیوم و پلوتونیوم؟
ایزوتوپ معمول اورانیوم (اورانیوم ۲۳۸) براى ساخت سلاح اتمى مناسب نیست. چرا که با شلیک نوترونى به هسته این ایزوتوپ، احتمال به دام افتادن نوترون و تشکیل اورانیوم ۲۳۹ از احتمال شکافت هسته اى بسیار بیشتر است. درحالى که در اورانیوم ۲۳۵ امکان شکافت هسته اى بیشتر است. اما فقط ۷/۰ درصد اورانیوم موجود در طبیعت، ایزوتوپ ۲۳۵ است. به همین خاطر براى تهیه مقدار مورد نیاز اورانیوم ۲۳۵ براى ساخت بمب، به مقدار زیادى از اورانیوم طبیعى نیاز است. در عین حال ایزوتوپ هاى ۲۳۵ و ۲۳۹ اورانیوم به روش هاى شیمیایى قابل جداسازى نیستند؛ چرا که از لحاظ شیمیایى یکسانند. بنابراین دانشمندان پروژه منهتن قبل از ساختن بمب باید مسئله دیگرى را حل مى کردند؛ جداسازى ایزوتوپ هاى اورانیوم به روش هاى غیرشیمیایى. پژوهش ها همچنین نشان مى داد که پلوتونیوم ۲۳۹ قابلیت شکافت هسته اى بالایى دارد. گرچه پلوتونیوم ۲۳۹ یک عنصر طبیعى نیست و باید ساخته شود. رآکتورهاى هنفورد در واشینگتن به همین منظور ساخته شده اند.
 
• «پسربچه»:(Little boy) یک بمب شلیکى
طرح «پسربچه» شامل تفنگى است که توده اى از اورانیوم ۲۳۵ را به سمت توده دیگرى از این ایزوتوپ شلیک مى کند. به این ترتیب یک جرم فوق بحرانى تولید مى شود. نکته اساسى که حتماً باید رعایت شود این است که این توده ها باید در زمانى کوتاه تر از حدفاصل بین شکافت هاى خود به خودى در کنار هم نگه داشته شوند. به محض اینکه دو توده اورانیوم در کنار هم قرار گرفتند، ناگهان چاشنى توده اى از نوترون ها را تولید مى کند و زنجیره واکنش ها آغاز مى شود. با ادامه این زنجیره، انرژى مدام افزایش مى یابد تا بمب به سادگى و خودبه خود منفجر شود.
 
1- در دنباله پلیسه بردارى
۲- مخروط دم
۳- لوله هاى ورود هوا
۴- چاشنى فشار هوا
۵- محفظه پوشش محافظ سربى
۶- بازوى چاشنى
۷- سرانفجارى
۸- چاشنى انفجارى معمول
۹- اورانیوم ۲۳۵ (گلوله)
۱۰- سیلندر توپ
۱۱- اورانیوم ۲۳۵ (هدف) با مخزن
(منعکس کننده نوترون درست این بالا است)
۱۲- میله هاى کنترل فاصله
۱۳- فیوزها
 

• «مرد چاق»(Fat man) : بمب انفجار درونى
شکافت خودبه خودى پلوتونیوم ۲۳۹ آنقدر سریع است که بمب تفنگى (پسربچه) نمى تواند دو توده پلوتونیوم را در زمانى کوتاه تر از حد فاصل شکافت ها کنار هم نگه دارد. بنابراین براى پلوتونیوم باید نوع دیگرى از بمب طراحى شود. قبل از سوارکردن بمب، چند نوترون سرگردان رها مى شوند تا زنجیره واکنش پیش رس را آغاز کنند. این زنجیره موجب کاهش عظیم انرژى منتشر شده مى شود. «ست ندرمى یر» (دانشمندى از لس آلاموس) ایده استفاده از چاشنى هاى انفجارى را براى کمپرس بسیار سریع کره پلوتونیوم مطرح کرد و بسط داد. با این روش کره پلوتونیوم به چگالى مناسب بحرانى مى رسد و انفجار هسته اى رخ مى دهد.

 

 

شامل 35 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق بمب هاى هسته اى

تحقیق در مورد انرژی هسته ای

اختصاصی از فی گوو تحقیق در مورد انرژی هسته ای دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد انرژی هسته ای


تحقیق در مورد انرژی هسته ای

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه29

فهرست مطالب

 مقدمه:

 

نانوتکنولوژی چیست؟

 

1- نانوکامپیوتر                           2-

 

نانواسمبلر

 

توسعه و پیشرفت در نانوتکنولوژی

 

نانوتکنولوژی و همگرایی علمی

 

نانوتکنولوژی مرطوب

 

نانوتکنولوژی خشک

 

چه زمانی به چنین ابزارهایی دست می یابیم؟      

 

حدود 100 سال پیش  که برای اولین بار مسئله استفاده از انرژی عظیم هسته ای مطرح شد، بشر نمی‌توانست درک تجربی و صحیحی نسبت به این موضوع داشته باشد. ولی دیری نپائید که دانش و تکنولوژی این انرژی در اختیار بشر قرار گرفت و توانست استفاده از آن را تجربه نماید.

 

دیرزمانی اگر کسی مسئله پرواز در آسمان و یا سفر به خارج این کره خاکی و گردش به دور آن را مطرح می کرد، حتماً او را خیالپرداز و مجنون قلمداد می کردند و یا به خاطر اظهار بعضی حقایق فرد را به توبه در کلیسا وا می‌داشتند!

 

زمانی روباتها و ابرکامپیوترها که می‌توانستند چندین محاسبه ریاضی را در چند ثانیه انجام دهند، فقط در داستانهای تخیّلی نویسندگان پیدا می شد. خلاصه همیشه در تمامی اعصار وقتی مطلبی فوق دانش و درک مردم آن زمان مطرح می‌شد در برابر مخالفتها و انتقادهای شدیدی قرار می‌گرفت ولی بعد از طی روزگاری، همگان به پیشرفتهای فوق العاده در آن زمینه مواجه می‌شدند و حتی این پیشرفت را موجب فراهم آمدن آسایش بیشتر خود می‌دیدند و حالا در عصرها بحث نانوتکنولوژی مطرح شده است، موضوعی که در تمامی ابعاد زندگی بشر و رشته های مختلف علمی ارتباط مستقیم و میسر خواهد داشت.

 

نانوتکنولوژی چنان روی کرد و نگرش به تکنولوژی را متحول ساخت که در صورت تحقق و رسیدن به مقصدی که ترسیم شده است، شاید بزرگترین جهش انسان برای صعود به قله های رفیع خواهد بود. اکنون جهان متوجه این رویکرد متحول کننده شده و متخصصین و دانشمندان در نقاط مختلف این کره‌ی خاکی دست به پژوهش و مطالعات وسیعی در این زمینه زده اند و طبق گفته‌ی برخی از آنان پیشرفت‌های صورت گرفته و روند رو به رشد نانو، بیش از حد انتظار و پیش‌بینی است.        

 


دانلود با لینک مستقیم


تحقیق در مورد انرژی هسته ای

کاربرد سلاحهای هسته ای از دیدگاه حقوق بین الملل

اختصاصی از فی گوو کاربرد سلاحهای هسته ای از دیدگاه حقوق بین الملل دانلود با لینک مستقیم و پر سرعت .

کاربرد سلاحهای هسته ای از دیدگاه حقوق بین الملل


کاربرد سلاحهای هسته ای از دیدگاه حقوق بین الملل

 

فرمت فایل : word(قابل ویرایش)تعداد صفحات91

 

بخش نخست
جامعه بین المللی و سلاحهای هسته ای
در طول نیم قرنی که از اختراع سلاح هسته ای می گذرد، برخی دولتها در پی کسب این سلاح برآمدند و در عین حال در جهت تکامل و هرچه قدرتمند تر و مؤثرتر نمودن این سلاح نیز گام برداشته اند. به موازات این اقدامات، کوششهایی نیز در جهت محدودیت و ممنوعیت این سلاح به عمل آمد و برخی دولتها سعی کردند تا از طریق انعقاد معاهدات و یا ایجاد عرفی در این زمینه، مانع از کاربرد مجدد این سلاح شوند. در این گفتار، به مجموع این تلاشها نظر خواهیم افکند و بدین منظور در بخش نخست، به ساخت سلاح هسته ای، انواع آن و آثار مخرب این سلاح می پردازیم و خواهیم دید که این سلاح به چه نحوی مسیر تکاملی خود را طی کرد. همچنین به کوششهای به عمل آمده در جهت ممنوعیت این سلاح خواهیم پرداخت و طی آن بررسی معاهدات دو و چند جانبه، قطعنامه های مجمع عمومی و عرف و توسل به دیوان بین المللی دادگستری خواهیم پرداخت. در بخش دوم سعی بر آن آمده است که موضوع ایران در برابر سلاحهای هسته ای و تحولات روز مورد بررسی قرار گیرد.

فصل اول – انواع سلاحهای هسته ای و اثرات آن
مبحث اول: ساختمان اتم و شکافت هسته آن
در سال 1913، دانشمندی دانمارکی به نام نیلزبور، مدلی برای ساختمان اتم پیشنهاد نمود که به علت سادگی آن، امروزه نیز برای شرح ساختمان اتم به زبان ساده به کار می رود.
بر اساس این مدل، هر اتم از یک هسته و الکترونهایی تشکیل می شود که در اطراف هسته و به دور آن، در گردش می باشند. هسته تنها فضای اتم را اشغال می کند، هرچند که اکثریت وزن اتم در همین هسته می باشد. در داخل هسته، پروتونها و نوترونها جای دارند. بار الکتریکی پروتون مثبت است و نوترونها فاقد بار الکتریکی می باشند. وزن پروتونها و نوترونها تقریباً برابر است. الکترون دارای بار منفی است و تنها پروتون وزن دارد. از آنجا که در هر اتم، تعداد الکترونها و پروتونها با یکدیگر برابر است، همدیگر را از نظر بار الکتریکی خنثی نموده و بنابراین بار الکتریکی هر اتم خنثی است.
در نگاه نخست به نظر می رسد که پروتونها که دارای بار مثبت می باشند، باید به علت دافعه ناشی از یکسان بودن بارهای خود، یکدیگر را دفع کنند و هسته متلاشی شود، ولی به علت وجود نوترونها در هسته، پروتونها درکنار یکدیگر باقی می مانند و در حقیقت، نوترونها به عنوان سیمان در هسته اتم عمل می کنند. با این حال، به تدریج که تعداد پروتونها افزایش می یابد، دافعه بین آنها نیز زیادتر می شود و در کنار هم باقی ماندن پروتونها مشکل تر می گردد. اورانیوم چنین حالتی دارد. اتم اورانیوم به دو صورت در طبیعت موجود است و از این روی اصطلاحاً گفته می شود که دارای دو ایزوتوپ می باشد. یکی از ایزوتوپهای اورانیوم، 146 نوترون دارد. این ایزوتوپ دیگر اورانیوم، 3 پروتون کمتر دارد و اورانیوم – 235 نام دارد. این ایزوتوپ تنها 7/0% از اورانیوم طبیعی را تشکیل می دهد و بقیه اورانیوم طبیعی، اورانیوم – 238 است. علت محدودیت اورانیوم – 235 در طبیعت، ناپایداری هسته این ایزوتوپ می باشد.
سنگ معدن اورانیوم از معادن سطحی و یا زیرزمینی استخراج می شود. ایالات متحده امریکا، افریقای جنوبی، شوروی سابق و استرالیا دارای معادن غنی اورانیوم می باشند. پس از استخراج، سنگ معدن اورانیوم در آسیابهای مخصوصی خرد می شود و به صورت ماسه در می آید. سپس، سنگ معدن خرد شده را در حلالهای شیمیایی مخصوصی حل می کنند و اکسید اورانیوم به دست می آورند. این ترکیب که اصطلاحاً کیک زرد نامیده می شود، 85% اورانیوم دارد. علاوه بر کیک زرد، ماسه اضافی نیز باقی می ماند که سمی و حاوی مواد رادیو اکتیو است. از یک معدن اورانیوم، هر ساله بطور متوسط 1000 تن اورانیوم به دست می آید که این خود مستلزم استخراج 250.000 تن سنگ معدن اورانیوم می باشد. سپس از اورانیوم به دست آمده که 3/99% آن را اورانیوم – 238 تشکیل می دهد، اورانیوم – 235 را که در ساختن سلاح اتمی به کار می رود، جدا می کنند. این عمل، تغلیظ اورانیوم نامیده می شود.
همان طور که گفته شد، اورانیوم – 235 نسبت به اورانیوم – 238 ناپایدار تر است. اگر یک نوترون آزاد به هسته اتم اورانیوم – 235 برخورد کند، اورانیوم – 236 به وجود می آید. این اورانیوم بسیار ناپایدار است و به سرعت شکسته می شود.


دانلود با لینک مستقیم


کاربرد سلاحهای هسته ای از دیدگاه حقوق بین الملل