فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی گوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق تأثیرات خستگی در میکرو ساختار چدن داکتیل آستمپر شده

اختصاصی از فی گوو دانلود تحقیق تأثیرات خستگی در میکرو ساختار چدن داکتیل آستمپر شده دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق تأثیرات خستگی در میکرو ساختار چدن داکتیل آستمپر شده


دانلود تحقیق تأثیرات خستگی در میکرو ساختار چدن داکتیل آستمپر شده

در طرحهای محور بادامک موتور ماشینهای نوین و امروزی لازم است که خواصی از قبیل سختی و مقاومت مد نظر بوده و همچنین بصورت ضد خستگی و دارای استحکام بالا و نشکن باشد.

تا به حال برای این قبیل کاربردها از فولادهای عملیاتی حرارتی شده و (آهنگری شده) استفاده می شد، که امروزه برای ساختن این قطعات کاربردی از چدن دالکتیل ریختگی آستمپر شده و به چدن  تبدیل شده استفاده می شود. که چدن  برای کاربردهای ویژه و مخصوص استفاده دارد، در نتیجه مبنا و ملاک استفاده از چدن  خواص مکانیکیشان می باشد.

          برای بدست آوردن چدن داکتیل ( ) آستمپر شده، مبنا و ملاک، فراهم کردن سلسله ترکیبات وسیع آن می باشد. در نتیجه این ترکیبات وسیع باعث تغییرات در میکرو ساختار و بخشهای عمده فازهای بنیت ، فریت ، آستنیت کربن بالا و میزان و تعداد گرافیت می شود، که امکان وجود مارتزیت، فریت  و دیگر کاربیدهای آلیاژی نیز هست، میکرو ساختار وابسته و تابع هر دو پارامتر 1- ترکیب 2- ریخته گری دقیق و درست چدن هست.

 

مراحل مختلف تولید و فرآوری در چهار پارامتر صورت می گیرد:

- مراحل تولید و فراوری چدن داکتیل ریخته گری شده که شامل: آستنیته کردن تا دمای حدود 950 تا 800 درجه سانتیگراد و سپس کاهش دادن دما تا درجه حرارت 400 تا 250 درجه سانتیگراد. که این عمل باعث می شود آستنیت موجود بصورت مناسب به فاز بعدی دگرگون و تغییر شکل یابد، و سپس تا دمای اتاق سرد می کنیم. در مراحل عملیات حرارتی آستمپرینگ افزایش عملیاتی حرارتی آستنیته کردن دارای اهمیت بوده و عامل مؤثری در تعیین و رخ دادن میکروساختار دقیق حاصل شده     می باشد. در مراحل اولیه عملیاتی آستمپرینگ، آستنیت بصورت تدریجی پیشرفت    می کند، که بصورت ناپایدار می باشد، در نتیجه به ترکیبی از فازهای بنیت، فریت، آستنیت کربن بالا دگرگون می شود.

شامل 41 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود تحقیق تأثیرات خستگی در میکرو ساختار چدن داکتیل آستمپر شده

دانلودمقاله فرآیندهای ریخته گری تحت فشارو آنالیز تنش و خستگی در اثر فشار

اختصاصی از فی گوو دانلودمقاله فرآیندهای ریخته گری تحت فشارو آنالیز تنش و خستگی در اثر فشار دانلود با لینک مستقیم و پر سرعت .

 

 

 


چکیده:
این پروژه در قالب چهار فصل آورده شده که در فصل اول اصول کلی فرآیند ریخته گری تحت فشار، آلیاژهای مناسب ازلحاظ ترکیب و دامنه انجمادی ، نقش آکومولاتور، محاسبات مربوط به بسته نگه داشتن قالب و زمان پر شدن قالب و مزایا و محدودیت های این فرآیندها بررسی شده است
در فصل دوم تشریح قالب واجزای درونی قالب ، جنس قالب و روشهای پوشش دهی مهندسی سطح ونقش پوشش های مصرفی ، تنش گیری قالبها ونکاتی در مورد نگهداری قالب و بررسی لحیم شدن آلیاژهای آلومینیوم با قالب و نقش عناصرآلیاژی برلحیم شدن قالب بررسی شده است .
درفصل سوم مشکلات ریخته گری تحت فشار، تاثیر عموامل مختلف برروی عیوب و راهبردهایی جهت بهبود فرآیند و بررسی عیوب قطعات و منشا شکل گیری و راههای پیش گیری همراه با تصاویرعیوب شرح داده شده است .
درفصل چهارم تاثیرفشار بر روی تنش و خستگی و ایجاد ساختارهای غیر تعادلی بر اثر توزیع فاز بر روی آلیاژهای AL-SI بررسی شده است.

 

 

 

 

 

فصل اول
فرآیندهای ریخته گری تحت فشار

 

 

 

 

 

 

 


1-1مقدمه :
ریخته گری تحت فشار یکی از اقتصادی ترین روشهای تولید در صنعت ریخته گری است وازاین رو شگفت انگیز نیست که تولید قطعات دراکثر کشورها سال به سال فزونی یافته است . در حال حاضرسهم این نوع تولید در جمهوری فدرال آلمان بیش از نصف کل تولیدات ریخته گری فلزات غیر آهنی می باشد .
این جهش قابل ملاحظه است که در ریخته گری دایکاست در رقابت با سایر روشهای ریخته گری و شکل دادن کسب کرده است مدیون اقتصادی بودن و گسترده بودن طیف کاربردی آن می باشد . فرآیندهای ریخته گری تحت فشار یکی از روشهای قدیمی برای ساختن قطعات فلزی می باشد . در خیلی از فرآیندهای ریخته گری پیشین ( که خیلی از آنها امروز هم به کار می روند) قالبها پس از استفاده باید خراب شده به خاطر اینکه قطعه پس از انجماد از داخل قالب خارج شود و نیاز به قالبهای دائمی که برای تولیدات با تیراژ بالا مورد استفاد قرار می گیرند بطور آشکار راه دیگر برای تولید قطعات است .
در قرون وسطی صنعتگران استفاده از قالبهای آهنی برای ساختن آلیاژهایی از قلع و سرب را تکمیل و انجام دادند و بعد از گذشت قرنها فرآیند قالبهای دائمی فلزی تکمیل تر شدند . بعدها در قرن 19 میلادی فرآیندها توسعه یافتند که فلز را به درون قالب با اعمال فشار برای ساختن قطعات مورد استفاده قرار می دادند که به فرایند ریخته گری دایکست معروف شدند .
در ابتدا ماشینهای ریخته گری تحت فشار برای آلیاژهای روی مورد استفاده قرار می گرفت اما با نیازمندی به تولید سایر قطعات با فلزات مختلف سبب ترقی و توسعه مواد قالب و فرآیندهای این روش شده است . در سال 1915 آلیاژهای آلومینیوم توسط ریخته گری تحت فشار در تعداد زیادی تولید شدند. بیشتر پیشرفتهای انجام شده در تکنولوژی ریخته گری تحت فشار در مدت قرن اخیر صورت گرفته است که تنوع موجود در سیستمهای ریخته گری تحت فشار ناشی از شار فلز و رفع وحذف کردن گازها از حفره قالب و واکنش پذیری بین فلز ذوب شده وسیستم هیدرولیکی و تلفات حرارتی در طول عملیات تزریق کردن می باشد . تنوع در این فرآیند دارای اشکال عمومی با توجه به طراحی مکانیکی و قالب کنترل حرارتی وبه کار گیری آن است .
چهار خانواده ی آلیاژی عمده به صورت ریخته گری تحت فشار تولید می شوند که عبارتند از : آلومینیوم و روی و منیزیم و آلیاژهای پایه مس هستند که در جدول 1-1 نشان داده شده است .

 

 

 

 

 

 

 

سرب و قلع به طور کمتر و حتی آلیاژهای آهنی نیز همچنین می توانند توسط ریخته گری تحت فشار تولید شوند. سه نوع اصلی از فرآیند ریخته گری تحت فشار که شامل فرآیند محفظه گرم و فرایند محفظه سرد و تزریق مستقیم می باشد .
فرآیند محفظه گرم ابتدائی ترین فرآیند است که اختراع شده است که این روش به طور پیوسته و مکرر برای مواد با نقطه ذوب پایین مورد استفاده قرار می گرفته است (روی وآلومینیم و قلع و برای الیاژهای منیزیم) . بدین ترتیب درفرآیند محفظه گرم که باعث به حداقل رساندن آلیاژهای مذاب در معرض اغتشاش و هوای اکسنده و از دست دادن حرارت در طول مرحله تزریق با نیروی هیدرولیکی می باشد . در این روش که با طولانی شدن تماس درونی و نزدیک بین فلز ذوب شده و موجود باعث ایجاد بروز مشکلاتی در تولید قطعات با این فرآیند می شوند .
در فرآیند محفظه سرد با رفع شدن مشکلات مربوط به مواد با جدا کردن مخزن فلز مذاب برای سیکلهای بیشتری کاری در نظر گرفته شده است. در ریخته گری تحت فشار محفظه سرد به اندازه گیریهای خاصی برای پر کردن قالب برای تولید قطعه نیاز می باشد و بلافاصله تزریق فلز مذاب به داخل قالب و فقط در حدود چند ثانیه در حالت تماس با سیستم هیدرولیکی خواهد بود که همین در معرض قرار گرفتن کم با سیستم هیدرولیکی اجازه ریخته گری آلیاژهای دمای بالا همانند آلومینیوم و مس وحتی برخی از آلیاژهای آهنی را می دهد .

 


1-2 اصول کلی فرآیند ریخته گری تحت فشار:
ریخته گری تحت فشار (دایکاست) عبارت است از یک روش ریخته گری که در آن فلز مایع تحت تاثیر یک فشار نسبتا بالا به داخل قالب های دائمی چند تکه تزریق می شود بنابراین عمل پر کردن قالب همانند ریخته گری ماسه ای و یا ریخته گری با قالب ریژه تحت تاثیر نیروی وزن نیست بلکه بر اساس تبدیل انرژی فشاری که به فلز ریختگی مایع اعمال می شود به انرژی جنبشی تبدیل شده و به این ترتیب هنگام عمل ریختن جریانهای سیالی با سرعت بالا بوجود می آید تا اینکه بالا خره در انتهای پر کردن قالب انرژی جنبشی مواد متحرک به انرژی فشاری و حرارتی تبدیل تبدیل می شود .
ریخته گری تحت فشار از درون از ریخته گری با قالب فلزی ریژه توسعه پیدا کرده است و وجه مشترک هر دو روش استفاده از قالب های فلزی دائمی است .
اما ریخته گری با قالب های فلزی ریژه محدودیت هایی دارد زیرا پر کردن قالب فقط تحت نیروی ثقل انجام می گیرد و از این جهت دسترسی به سرعتهای بالا برای جریان سیال امکان پذیر نیست بر این اساس قطعات ریخته گری جدار نازک با دقت اندازه بالا و همچنین گوشه ها و لبه های تیز فقط تحت شرایطی با این روش قابل تولید هستند .
در ریخته گری تحت فشار (دایکاست) فلز مایع با سرعت زیاد به داخل حفره قالب فشرده می شود و با این روش بخصوص امکان تولید قطعات رختگی نازک و دقیق با کیفیت سطح بالا فراهم می گردد و می توان از ابعاد بیش از اندازه بزرگ در طراحی قطعات ریختگی اجتناب و در نتیجه در مصرف مواد ریختگی صرفه جویی نمود . از این جهت ریخته گری تحت فشار به لحاظ فنی و اقتصادی مزایای قابل توجهی دارد بویژه اینکه این روش نه فقط برای بهره وری بالایی را میسر می سازد بلکه کوتاهترین راه تولید یک محصول از فلز می باشد .
خصوصیت اصلی این فرآیند ریخته گری تحت فشار عبارت است از ایجاد یک فشار نسبتا زیاد هنگام پر کردن و تزریق می باشد که فلز مایع با سرعت زیاد به داخل حفره قالب جریان می یابد ازاین جهت عمل پر کردن قالب در این روش با روش های دیگر ریخته گری تفاوت دارد و با توجه به این حالت نتیجه می شود که برای طراحی قطعه ریختگی قالب و گلویی تزریق به شرایط مشخصی نیاز دارند . بعلاوه تولید انبوه قطعات ریختگی مستلزم تجهیزات ویژه جهت بسته نگه داشتن قالب ریختگی تحت فشار است این موضوع منجر به توسعه ماشین ریخته گری دایکاست شده که وظیفه آن از یک طرف باز کردن وبستن و بسته نگه داشتن قالب دایکاست بوده و از طرف دیگر فشردن فلز مایع به داخل قالب و اعمال فشار کافی تا پایان انجماد آن است .تولید به روش ریخته گری تحت فشار همیشه به صورت سری انجام می شود و بخصوص برای تولید تیراژمتوسط تا بالا مناسب است و این نوع تولید به مقدار زیادی مکانیکی شده و در بسیاری از موارد می توان با خودکار کردن آن در هزینه ها صرفه جویی نمود . پروسه تولید با ماشین ریخته گری تحت فشار اساسا با یک ترتیب از پیش تعیین شده صورت می پذیرد . این سیکل ماشینی از طرف اپراتور و یا به طور خودکار تکرار می گردد و برای دستیابی به مدت زمانهای کوتاه در هر سیکل و به حداقل رساندن اثرات حرارتی قالب ریخته گری دایکاست قطعات ریخته گری غالبا به صورت جداره نازک طراحی می گردند و اگر قرار باشد که قطعات ریخته گری به علاوه دارای طراحی پیچیده ای باشند تولید قطعات بدون عیب بعضا دشوار می گردد و در عین حال ماشین های پر قدرت و مدرن ریخته گری دایکاست این امکان را بوجود آورده اند تا بتوان با فشارهای تزریق بالا و سرعتهای پر کردن زیاد که در اکثر موارد جهت تولید قطعه ریختگی بی عیب و نقص کافی است کار کرد .
1-3 ماشینهای ریخته گری تحت فشار:
این ماشینها دارای وظایفی هستند که عبارتند از:
1- بستن قالب .
2- نگه داشتن دو نیمه قالب بطور مطمئن در کنار یکریگر .
3- وارد ساختن نیرویی بر فلز مذاب برای وارد شدن به قالب .
4- باز کردن قالب از همدیگر .
5- بیرون اندازی قطعه ریخته شده از درون قالب .
یک ماشین ریخته گری تحت فشار باید دارای یک چارچوب قوی طراحی شده برای تقویت و پشتیبانی و باز کردن نیمه قالب ها در یک مسیر درست و صحیح می باشد . چارچوب باید به حد کافی قوی ومحکم باشد چون بیشتراوقات وزن مونتاژ شده قالب بیشترازچندین تن است . همچنین نیاز به نیروی قفل شوندگی برای نگه داشتن دو نیمه قالب که این نیروی قفل شوندگی باید بیشتر از حداکثر نیروی رشد یافته بوسیله فلز با مراقبت های کافی به نشتی گیره در محل جدایش قالب ها می باشد . در برخی از ماشینهای ریخته گری تحت فشار مدرن و جدید نیروی قفل شوندگی ممکن است به نزدیکی 1000 تن برسد که بستگی به اندازه قالب و فشار به کاربرده شده دارد . حداکثر نیرویی که منجر به باز شدن قالب می شود برابر است با حداکثر فشار مذاب ضرب در سطح کل تصویر شده حفره قالب و سیستم راهگاهی است .
سه روش برای بستن و قفل کردن قالبها استفاده شده که عبارتند از:
1- هیدرولیک مستقیم
2- هیدرولیک با زانویی
3- وسیستم مکانیکی می باشند .
1-4 فرآیندهای ریخته گری تحت فشار( DIE CASTING PROCESS):

 

)High pressure die castingریخته گری تحت فشار با فشار بالا ( -1
-2 ریخته گری تحت فشار با فشار پایین( low pressure die casting)
-3 ریخته گری تحت فشار تحت خلا (vacuum die casting)
1-5 ریخته گری تحت فشار با فشار بالا : (High pressure die casting)
ریخته گری تحت فشار مرسوم (HPDCیک شکل ویژه ای ازفرآیند ( ساخت قطعات با استفاده از قالبهای فلزی دائمی است که می توان قطعاتی در محدوده وزنی از چند اونس تا نزدیک به 25 کیلو گرم را تولید نمود. ریخته گری تحت فشار قدیمی برای تولید قطعات بزرگ قابل استفاده نبود اما پس از مطالعه و بررسی کردن اگرچه می توان قطعات خیلی بزرگ نظیر چارچوب در خودرو و یا یکسری از لوازم منزل را می توان بوسیله تکنولوژی ریخته گری تحت فشار تولید کرد. در فرایند ریخته گری تحت فشار همچنین اجازه تشکیل قطعات درون هم راممکن می سازند که در این فرایند شامل قرار دادن یاتاقان استحکام بالا که در درون قالب قبل از تزریق نصب و جایگذاری شده است . یک توقف و مکث کوتاه مدت مناسب باید برای نصب و قرارگیری فراهم شده که سیکلهای ریخته گری تحت فشار منجربه کند شدن بوسیله افزایش عملیات اضافی خواهد شد .
ریخته گری تحت فشار مرسوم می تواند در محدوده خیلی از آلیاژها به کار برده شود که شامل آلومینیوم و روی و منیزیم و سرب و برنج می باشد .
دو نوع اصلی از فرآیند ریخته گری تحت فشار وجود دارد که عبارتند از:
1- Hot chamber process
2- Cold chamber process
1-5-1 ماشینهای تحت فشار محفظه گرم (Hot chamber process):
همانطور که درمطالب فوق اشاره شد در ریخته گری تحت فشار(HPDC ) دارای دو نوع کلی می باشد که شامل محفظه سرد و محفظه گرم بوده که در این قسمت به توضیح و بررسی محفظه گرم می پردازیم .
در این روش که ماشینها دارای یک کوره مناسب برای ذوب و نگهداری فلز می باشند که سیستم تزریق کاملا در زیر سطح مذاب غوطه ور بوده که درزیر سطح فلز مذاب وبا به کار انداختن یک پیستون و حرکت در داخل سیلندر برای اعمال تزریق فلز مذاب به درون قالب فلزی در نظر گرفته شده است .
در این سیستم هنگامی که پیستون تزریق به سمت بالاحرکت می کند باز شدن دیوار سیلندرتزریق شده و در تمام این مدت فلز مذاب با حجم مشخص وارد سیلندر تزریق شده وسپس پیستون توسط نیرویی روبه پایین با سیستم نیوماتیک یا هیدرولیکی باعث بسته شدن قسمت باز سیلندر شده و سپس فلز مذاب در داخل سیلندرمحبوس شده و از میان یک نازل و کانال و مجرای مناسب به سمت بالا وبه درون قالب هدایت می شود و بعد از یک فاصله زمانی از پیش تعیین شده دوباره پیستون به سمت بالا حرکت کرده و به فلز مذاب اجازه وارد شدن به داخل کانال و نازل را میدهد سپس عملیات تزریق انجام گرفته و قطعه پس از انجماد از داخل قالب به بیرون رانده می شود.
سرعتهای تزریق فلزات مذاب و فشار تزریق ها برای فلزات مختلف و قطعات مختلف بطور مناسب قابل کنترل هستند . بیشتر ماشینهای ریخته گری تحت فشار محفظه گرم زیر فشارpsi 2000 می کنند و برای بدست آوردن یکنواختی و همشکلی قطعات ریخته گری تحت فشار و حداکثر سرعت عملکرد آن باید یک سیستم کنترل سیکل زمانی اتوماتیک از پیش تعیین شده باید مورد استفاده قرار گیرد . سیکل یک ماشین با فشار یک دکمه آغاز شده و توسط یک سیستم اتوماتیک مداوم ادامه داشته ودر پایان یک سیکل کامل متوقف می شود . اپراتور پس از خارج سازی قطعه از داخل قالب و بازرسی آن و بر حسب مورد می توان از یک روان کننده به درون قالب برای شروع سیکل بعدی استفاده نمود .
در این روش بدلیل جلوگیری از جابجایی مذاب از درون کوره دیگر افت دما را نداشته وهمچنین زمان عملیات در این روش نسبت به روش محفظه سرد کمتر می باشد .
توصیف و شرح هر یک ازاین روش ها ناشی از طراحی سیستم تزریق مذاب به شیوه های مورد استفاده شده دارد . شکل شماتیک ریخته گری تحت فشارمحفظه گرم در شکل 2- 1 نشان داده شده است.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  135  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله فرآیندهای ریخته گری تحت فشارو آنالیز تنش و خستگی در اثر فشار

تحقیق در مورد خستگی در ورزش

اختصاصی از فی گوو تحقیق در مورد خستگی در ورزش دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد خستگی در ورزش


تحقیق در مورد خستگی در ورزش

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه12

 

فهرست مطالب ندارد 

خستگی در ورزش و راههای مبارزه با آن

 

  یکی از مواردی که امروزه متخصصین علوم ورزشی را وادار به تحقیق کرده ، عارضه مهم خستگی است. همانطوری که می دانیم خستگی بر ادامه ورزش اثر نا مطلوب گذاشته، از کیفیت کار ورزشکاران می کاهد . این امر ورزشکاران و بخصوص مربیان را وادار از کیفیت کار ورزشکاران می کاهد . این امر ورزشکاران و بخصوص مربیان را وادار می سازد تا تحقیق کنند و بفهمند که چگونه می توان با خستگی مبارزه نمود و شدت  آنرا می سازد تا تحقیق کنند و بفهمند که چگونه می توان با خستگی مبارزه نمود و شدت آن را کاهش داد و بعد از تمرین آنرا سریعتر از بدن رفع کرد؟ باید متذکر شد که خستگی می تواند ریشه روانی یا بیماری داشته باشد، ولی ما در اینجا درباره خستگی حاصل از فعالیتهای ورزشی بحث خواهیم کرد . در مورد تعریف خستگی باید گفته شود: (( حالت ناخوشایندیست که در بدن بوجود می آید .))

 

حال برای آنکه راههای مبارزه با این حالت را بدانیم، به علتهای فیزیولوژیک خستگی و انواع آن خواهیم پرداخت .

 

انواع خستگی و علتهای هر یک :

 

بطور کلی دو نوع خستگی وجود دارد 1- خستگی هوازی 2- خستگی غیر هوازی.

 

خستگی هوازی نوعی از خستگی است که در اثر فعالیتهای هوازی بوجود می آید و علل آن بشرح زیر است:

 

-          کم شدن سطح گلوکز خون در اثر فعالیت که در نتیجه کمبود گلیکوژن جگر و عضله است.

 

-           کم شدن آب بدن بعلت بالا رفتن سطح متابولیسم و عمل تعریق

 

-           کم شدن نمک بدن

 

-           افزایش حرارت بدن

 

-          عدم توازن بین یونهای سدیم و پتاسیم

-      و بالاخره کاهش بازده قلب به علت افزایش نیاز اندامها، که

 


دانلود با لینک مستقیم


تحقیق در مورد خستگی در ورزش

بررسی اثر استفاده از پودر لاستیک بر خستگی مخلوط های آسفالت بازیافتی

اختصاصی از فی گوو بررسی اثر استفاده از پودر لاستیک بر خستگی مخلوط های آسفالت بازیافتی دانلود با لینک مستقیم و پر سرعت .

بررسی اثر استفاده از پودر لاستیک بر خستگی مخلوط های آسفالت بازیافتی


بررسی اثر استفاده از پودر لاستیک بر خستگی مخلوط های آسفالت بازیافتی

 

عبدالحمید بهروزی خواه - کارشناس ارشد راه وترابری – دانشکده مهندسی عمران – دانشکده فنی – دانشگاه تهران
ساسان افلاکی - استادیار دانشکده مهندسی عمران – دانشکده فنی – دانشگاه تهران

چکیده مقاله:

در کشورهای توسعه یافته، استفاده مجدد از مصالح بازیافتی در ساخت محصولات جدید از دیرباز مورد توجه بوده است. پودر لاستیک و تراشه از جمله مصالحی هستند که کاربرد زیادی در سایر صنایع نداشته و عموما به عنوان مصالح زاید در طبیعت انباشته میشود. این در حالی است که تجربیات موفقی از استفاده از پودر لاستیک و تراشه آسفالت در ساخت مخلوطهای آسفالتی گزارش شده است. در این پژوهش اثر استفاده همزمان از پودرلاستیک و تراشه بر خستگی مخلوطهای آسفالتی مبتنی بر مکانیک شکست مورد بررسی قرار گرفته است. آزمایش مدول برجهندگی، خزش استاتیکی به روش کشش غیر مستقیم و مقاومت کششی غیر مستقیم روی نمونهها انجام شده و مقدار مدول برجهندگی، نرمی خزشی، انرژی کرنش خزشی مستهلک شده، انرژی شکست و نسبت انرژی مخلوط ها با هم مقایسه شده است. نتایج نشان میدهد که استفاده از پودر لاستیک در مخلوط های حاوی تراشه آسفالت، اثرات مثبتی بر خستگی مخلوطهای ساخته شده داشته است


دانلود با لینک مستقیم


بررسی اثر استفاده از پودر لاستیک بر خستگی مخلوط های آسفالت بازیافتی

تاثیر پلیمر استایرن بوتادین استایرن (SBS) بر خستگی مخلوط های آسفالت ولرم (WMA)

اختصاصی از فی گوو تاثیر پلیمر استایرن بوتادین استایرن (SBS) بر خستگی مخلوط های آسفالت ولرم (WMA) دانلود با لینک مستقیم و پر سرعت .

تاثیر پلیمر استایرن بوتادین استایرن (SBS) بر خستگی مخلوط های آسفالت ولرم (WMA)


تاثیر پلیمر استایرن بوتادین استایرن (SBS) بر خستگی مخلوط های آسفالت ولرم (WMA)

• مقاله با عنوان: تاثیر پلیمر استایرن بوتادین استایرن (SBS) بر خستگی مخلوط های آسفالت ولرم (WMA) 

• نویسندگان: حامد عمرانی ، علیرضا غنی زاده ، مرتضی اسدامرجی 

• محل انتشار: دهمین کنگره بین المللی مهندسی عمران - دانشگاه تبریز - 15 تا 17 اردیبهشت 94 

• فرمت فایل: PDF و شامل 7 صفحه می باشد.

 

 

 

چکیــــده:

ترک های خستگی از مهمترین علل خرابی روسازی های انعطاف پذیر محسوب می‌شوند. هدف این تحقیق بررسی تأثیر پلیمر استایرن بوتادین استایرن (SBS) بر روی خستگی مخلوط‌های آسفالت ولرم (WMA) می‌باشد. از این رو آزمایش کشش غیر مستقیم خستگی دو مخلوط آسفالت (ITFT) بر روی ولرم ساخته شده با آسفامین و ساسوبیت و همچنین آسفالت گرم در دمای 20 درجه سانتی گراد و در دو سطح تنش 300 و 450 کیلوپاسکال انجام گرفت. همچنین به منظور بررسی حساسیت رطوبتی مخلوط‌های آسفالت ولرم پلیمری، آزمایش کشش غیر مستقیم (IDT) بر روی نمونه خشک و اشباع مطابق آیین نامه آشتو 283 انجام شد. نتایج حاصل از آزمایش نشان داد که مخلوط‌های آسفالت ولرم پلیمری عمر خستگی کمتری نسبت به مخلوط‌های آسفالت گرم پلیمری دارند. همچنین مقایسه خستگی آسفالت‌های ولرم پلیمری نشان داد که مخلوط‌های آسفالت ولرم پلیمری ساخته شده با ساسوبیت عمر خستگی بیشتری نسبت به مخلوط آسفالت ولرم پلیمری ساخته شده با آسفامین دارد.

________________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** توجه: در صورت مشکل در باز شدن فایل PDF مقالات نام فایل را به انگلیسی Rename کنید. **

** درخواست مقالات کنفرانس‌ها و همایش‌ها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **


دانلود با لینک مستقیم


تاثیر پلیمر استایرن بوتادین استایرن (SBS) بر خستگی مخلوط های آسفالت ولرم (WMA)